A COUNTEREXAMPLE TO INFINITE-DIMENSIONAL VERSION
OF THE MORSE-SARD THEOREM

Jiang Haiyi

Abstract. In this note a positive answer for a question posed by S. Bates in 1992 is given, i.e., there exists a
C^∞ rank-1 map $f: \mathbb{R}^2 \to \mathbb{R}^l$ such that ∂A has nonempty interior for some subset $A \subset \mathbb{R}^l$ of critical
points with finite Hausdorff dimension. It is to say the Morse criticality theorem can not be generalized to
infinite-dimensional spaces.

§ 1 Introduction

The Morse-Sard theorem is a fundamental theorem in analysis especially in the basis of transversality theory and
differential topology. The classical Morse-Sard theorem states that the image of the set of critical points of
a function $f: \mathbb{R}^m \to \mathbb{R}^l$ of class C^{m-l+1} has zero Lebesgue measure in \mathbb{R}^l for $m \geq l \in \mathbb{N}$. It was proved by Morse [10] in
the case $l = 1$ and by Sard [20] in the general case. So it is called that.

In case \mathbb{R}^m is replaced by an open set in a Hilbert or Banach space B it is easy to see that the theorem
is false if either (i) f is not required to be C^∞, (ii) B is not separable. It is natural to ask whether the following
generalization is true. Let $f: U \to \mathbb{R}^l$ be C^∞ where U is an open set in a separable Hilbert space H then the set of critical values for f forms a set of measure zero. Kupka has proved that this generalization is false in [3]. But in his example the set of critical points for f is infinite-dimensional.

Later in 1993 Bates constructed a surjective C^∞ map $f: \mathbb{R}^2 \to \mathbb{R}^2$ satisfying rank $Jf_v \leq 1$ for all
$v \in E$ where E is any separable infinite-dimensional Banach space. But in his example the set of critical
points for f is E so it is infinite-dimensional too. For details see [4].

In view of the preceding remarks it would be interesting to determine precisely how large a set $A
\subset E$ must be in order that its image under some smooth rank-1 map into the plane has non-empty interior.
Bates concluded this discussion with the following questions in [5]. Does there exist a C^∞ rank-1 map $f: \mathbb{R}^2 \to \mathbb{R}^m$ such that ∂A has non-empty interior for some subset $A \subset \mathbb{R}^l$ of finite Hausdorff dimension for $m \in \mathbb{N}$? On the other hand can the Morse criticality theorem [10] be generalized to infinite-di-

Received 2002-01-04.

MR Subject Classification 28A80, 37C45.

Keywords Hausdorff measure, rank-r Fréchet differentiable.

Supported by the National Natural Science Foundation of China 10171090.
mensional spaces]

In this note we construct a C^∞ map $f: H \to \mathbb{R}^d$ such that the set of critical points is the Cantor set $\emptyset \subset H$ with $\dim_H \emptyset \leq 4d$ and $\emptyset \not\subset \mathbb{R}^{d-1}$. It shows that the Morse criticality theorem cannot be generalized to infinite-dimensional spaces. Recently a similar result was discovered independently by Bates and Moreira [6].

§ 2 Definitions

Let A be a non-empty bounded subset of metric X and $d \geq 0$. For each $\delta > 0$ let

$$\mathcal{H}^d A = \inf \sum_i \text{diam} U_i \|_{\mathbb{R}^d} A \text{ is covered by sets } U_i \text{ with } 0 < \text{diam} U_i \leq \delta,$$

where the infimum is over all coverings of A by a finite or countable collection of sets with diameters at most δ. We may define

$$\mathcal{H}^d A = \lim_{\delta \to 0} \mathcal{H}^d A.$$

We call $\mathcal{H}^d A$ the d-dimensional Hausdorff measure of A.

It is easy to see that there is a number d at which $\mathcal{H}^d A$ jumps from ∞ to 0; we call this number d the Hausdorff or Hausdorff-Besicovich dimension of A which we denote by $\dim_H A$. Thus

$$\dim_H A = \sup d \|_{\mathbb{R}^d} A = \infty = \inf d \|_{\mathbb{R}^d} A = 0.$$

Let $t > 0$ be a real number and X a metric space; we recall that a subset $A \subset X$ is t-finite if $\mathcal{H}^t A < \infty$; that $A \subset X$ is t-null if $\mathcal{H}^t A = 0$; and that $A \subset X$ is t-sigma-finite if A is the countable union of t-finite sets.

If $0 < p < \infty$ then l^p consists of all real sequences $x = \{ x_n \}$ such that

$$\| x \|_p = \left(\sum_{n=1}^{\infty} | x_n |^p \right)^{1/p} < \infty,$$

with the norm

$$\| x \|_p = \left(\sum_{n=1}^{\infty} | x_n |^p \right)^{1/p}.$$

Similarly l^∞ is the vector space of all bounded real sequences with the sup norm. As we know for $1 \leq p < \infty$ $\| \cdot \|_p$ is a separable Banach space but l^∞ is not separable. For l^p-spaces we have the following comparable theorem.

Theorem 2.1. If $1 \leq p < q \leq \infty$ then $l^p \subset l^q$ holds. Moreover, the conclusion is proper.

To know the proof of this theorem [see 7].

Especially for $p = 2$ we denote by l^2 the space of real sequences $x = \{ x_n \}$ equipped with the norm

$$\| x \| = \left(\sum_{n=1}^{\infty} | x_n |^2 \right)^{1/2} < \infty.$$

It is well known that $l^2 || \cdot ||$ is a separable Hilbert space. Let $H = l^2$.

Let H^* be the dual of H. A base of H^* is formed by the linear functions $e_1 e_2 \ldots e_n \ldots$ where
\[e_n^k \ x = x_n \quad \text{for} \quad x = \{ x_1, x_2, \ldots, x_n \}. \]

For any \(k \in \mathbb{N} \), let \(L^k \) be the space of all \(k \)-linear symmetric continuous functions on \(H \). \(\mathcal{L}^k \) is also a Hilbert space with norm \(\| \cdot \|_k \). Clearly \(\mathcal{L}^k = H^* \).

To each \(e_n \) and each \(k = 1, 2, \ldots, n \) there is canonically attached an element \(e_n^k \) in \(L^k \) defined by

\[e_n^k \ x^1 \ x^2 \ldots \ x^k = e_n \ x^1 e_n \ x^2 \ldots e_n \ x^k \]

for any points \(x^1, x^2, \ldots, x^k \) in \(H \). Note that for any \(k \) \(\| e_n \|_k = 1 \).

To each \(x \in H \) we associate a continuous linear operator \(\mathcal{L} \) \(x \colon L^k \mathcal{L} = H^* \) for all \(k \geq 2 \) by\(\mathcal{L} \)\(\| \mathcal{L} \| \leq 1 \) and \(\mathcal{L} \)\(\| x \| = 1 \).

The norm of \(\mathcal{L} \) \(x \) is \(\| x \| \) for \(\| x \| = 1 \) and \(\| x \| = 1 \) and \(\| x \| = 1 \).

Now let \(\mathcal{L} \) \(U \to \mathbb{R}^1 \) be a function defined on the open set \(U \subset H \). We say that \(\mathcal{L} \) is of class \(\mathcal{C}^\infty \) if there exists a sequence of continuous maps \(D^k \mathcal{L} \colon x \in U \to D^k \mathcal{L} \) \(x \in H^* \) such that \(\mathcal{L} \) for any \(\varepsilon > 0 \) and any integer \(N > 0 \) there exists a \(\delta > 0 \) such that \(\| x \| = 1 \) and \(\| x \| = 1 \) then

\[\| x \| = 1 \]

and

\[\| D^k_{x+y} - D^k_x \| \leq 1 \quad \| x \| = 1 \]

for \(k = 1, 2, 3, \ldots, n \). The sequence \(D^1, D^2, \ldots \) is then unique and \(D^k \) is called the \(k \)-th \(\mathcal{C}^\infty \) derivative of \(\mathcal{L} \) at \(x \) and is written \(D^k \mathcal{L} \) \(x \).

For a \(\mathcal{C}^\infty \) differentiable map \(\mathcal{L} \colon H \to \mathbb{R}^m \) where \(m \in \mathbb{N} \) and \(H \) is a separable Hilbert space. The rank \(r \) of a point \(x \in H \) is defined as the rank of the tangent map \(D^1 \mathcal{L} \) \(x \in H \). The dimension of the image \(D^1 \mathcal{L} \) \(x \in H \) is \(r \). Evidently \(D^1 \mathcal{L} \) \(x \in H \) is \(D^1 \mathcal{L} \) \(x \in H \) for all \(x \in H \). \(A \subset H \) is a set of rank \(r \) for \(\mathcal{L} \) \(H \to \mathbb{R}^m \) if the rank of \(D^1 \mathcal{L} \) \(x \) is at most \(r \) for every \(x \in A \).

§3 Morse criticality theorem

The classical Morse criticality theorem is as follows.

Theorem 3.1. Let \(A \) be a subset of \(\mathbb{R}^m \) and \(k \) a non-negative integer. There exists a sequence of sets \(A, i \in [0, 1] \) and maps \(\varphi_i, i \in \mathbb{N} \) such that \(A_0 = \varnothing \subset A \subset \mathbb{R} \) \(\cap A \subset \mathbb{N} \) and for \(i \geq 1 \) \(\varphi_i \) is a \(C^1 \) homeomorphism of the ball \(B^m_{\varepsilon_i} \) into \(\mathbb{R}^m \) with \(A_i \subset B^m_{\varepsilon_i} \) and \(B^m_{\varepsilon_i} \) is the set of \(x \in \mathbb{R}^m \) with \(\| x \| < \varepsilon_i \).

\[\| \varphi_i \| < \varepsilon_i \| x \| \]

for any \(f \in C^k \) vanishing on \(A \) there exist monotone functions \(\delta \varepsilon_i \) \(x \in \mathbb{R}^m \) with \(\lim \delta \varepsilon_i \varepsilon_i = 0 \) such that

\[\| \varphi_i \| < \delta \varepsilon_i \| x \| \]

for all \(x, y \in B^m_{\varepsilon_i} \) with \(\varphi_i \) \(y \in A \).
This theorem has been proved in [1] in this theorem the m-dimensional Euclidean space is finite-dimensional. The problem of Bates is to ask if \(\mathbb{R}^n \) can be replaced by an infinite-dimensional space in particular the separable Hilbert space \(L^2 \).

In the next section we will prove there exists a \(C^\infty \) rank-1 map \(f : \mathbb{F}^2 \rightarrow \mathbb{R}^1 \) such that \(\mathbb{F} A \) has nonempty interior for some subset \(A \subseteq \mathbb{F}^2 \) of critical points with finite Hausdorff dimension. If the Morse criticality theorem in the infinite-dimensional space is true then we can easily prove that \(\mathbb{F} A \) is a 0-dimensional subset in \(\mathbb{R}^1 \). It is a contradiction.

§ 4 Construction of the example

Now we define the function \(F : H \rightarrow \mathbb{R} \) as follows. For \(x \in H \setminus \{ x_1 \dot{} x_2 \dot{} \ldots \} \in H \) set
\[
E x \equiv \sum_{n=1}^{\infty} 2^{-n} 3 \cdot 2^{-\frac{3}{4}} x_n^2 - 2x_n^3.
\]
This series is clearly convergent for all \(x \in H \). We now show that \(F \) is of class \(C^\infty \).

The sequence of maps \(D^k \) \(x \in H \rightarrow D^k x \) \(\in L^1 \) \(H^+ \) is given by
\[
D^1_x = \sum_{n=1}^{\infty} 2^{-n} 3 \cdot 2^{-\frac{3}{4}} x_n^2 - 6x_n e_n e_n^2
\]
\[
D^2_x = \sum_{n=1}^{\infty} 2^{-n} 3 \cdot 2^{-\frac{3}{4}} - 12x_n e_n e_n^2
\]
\[
D^3_x = 12 \sum_{n=1}^{\infty} 2^{-n} e_n e_n^2
\]
\[
D^k_x \equiv 0 \quad \text{for all } k \geq 4.
\]

It is easy to know that \(D^k \) converges and defines a member of \(L^1 \) \(H^+ \) for each \(x \in H \) and \(k \in \mathbb{N} \). And it is easy to verify that the map \(x \rightarrow D^k x \) is continuous for every \(k \in \mathbb{N} \) for any \(r \in H \) there is a constant \(M_k > 0 \) only depends on \(k \) such that \(\| D^k x \| \leq M \| r \|^2 \). It then follows that \(F \) is of class \(C^\infty \).

From the formula for \(D^k \) \(x \equiv D^1_x \) it follows that \(x \) is a critical point if and only if \(x_n = 0 \) \(x_n \dot{} x_n \in \mathbb{Z} \). Let \(\gamma = \{ x \} x_1 \dot{} x_2 \dot{} x_n \in \mathbb{Z} \). Then we have \(\mathbb{F} \gamma \equiv \mathbb{F} x \equiv \mathbb{F} \equiv \mathbb{F} x \equiv \mathbb{F} 0 \equiv 0 \equiv ^0 \equiv ^0 \).

It is easy to see that \(F \) is a rank-1 map by the definition of rank-1. And \(\gamma \) is a set of rank 0 for \(F \). Then this \(F \) is a \(C^\infty \) map such that the set of critical points is the Cantor set \(\gamma \subset H \) with \(\text{dim} \gamma \equiv 4 \equiv 0 \equiv ^0 \equiv 0 \equiv ^0 \).

It remains to verify that \(\text{dim} \gamma \equiv 4 \equiv 0 \equiv ^0 \equiv 0 \equiv ^0 \equiv 0 \equiv ^0 \). Let \(U^x = \{ y \in H \} \| x - y \| < \varepsilon \) be an open set for \(x \in H \varepsilon > 0 \) in \(H \). And fix \(k \) let \(\varepsilon_k = \frac{2^{-k/4}}{1 - 2^{-1/4}} \) then \(U^k \) can cover at most one of \(\{ x_n \} x_n \in \mathbb{Z} \) \(2^{-i/4} \) for \(i \equiv k \) and \(x_i = 0 \) for \(i > k \). Thus at least \(2^k + 1 \) open sets of radius \(\varepsilon_k \) are required to...
cover \mathcal{C} so we have
\[
\dim_{\mathbb{F}} \mathcal{C} \leq \dim_{\mathbb{F}} \mathcal{C} \leq \lim_{k \to \infty} \frac{\log 2^k + 1}{2^{-k/4}} = 4.
\]

For $m \geq 2$ the function $f : \mathbb{R}^{m-1} \otimes \mathbb{R} H \to \mathbb{R}^m$ can be defined as follows for $x = x_1, x_2, \ldots, \tilde{x} \in H$ and $y \in \mathbb{R}^{m-1}$ by $y \otimes_{\otimes_{\mathbb{R}}} x_1, x_2, \ldots, \tilde{x} \in \mathbb{R}^m$ and $y \in \mathbb{R}^{m-1}$. Then $f : \mathbb{R}^{m-1} \otimes \mathbb{R} \mathcal{C} = \mathbb{R}^{m-1}$ but f is a rank-m map.

On the other hand for $m \geq 2$ the function $f : \mathbb{H} \to \mathbb{R}^m$ can be defined as follows for $x = x_1, x_2, \ldots, \tilde{x} \in H$ and $y \in \mathbb{R}^m$ where the number of x's is m. Then the set $\mathcal{C} \subset H$ is a subset of critical set for f and $\dim_{\mathbb{F}} \mathcal{C} \leq 4$ but $\mathcal{C} = \{ y = y \in \mathbb{R}^m \mid y_1 \in \mathbb{R} \bigcup \bigcup y_1 = y_2 = \ldots = y_m \}$ is a one-dimensional subset in \mathbb{R}^m. And f is a rank-m map.

For $m \geq 2$ the function $f : \mathbb{H} \to \mathbb{R}^m$ can be defined as follows for $x = x_1, x_2, \ldots, \tilde{x} \in H$ and $y \in \mathbb{R}^m$ where the number of 0 is $m - 1$. Then the set $\mathcal{C} \subset H$ is a subset of critical set for f and $\dim_{\mathbb{F}} \mathcal{C} \leq 4$ but $\mathcal{C} = \{ y \in \mathbb{R}^{m-1} \}$ is a one-dimensional subset in \mathbb{R}^m. Meanwhile f is a rank-1 map.

References
