Existence time for solutions of semilinear different speed
considered by Fang [6]. In this paper, we devote to study the problem in dimension \(d \geq 2 \). We consider the following semilinear Klein-Gordon system

\[
\begin{align*}
\Box u + \mu^2 u &= F_1(u, v, \partial_t u, \partial_t v, \partial_x u, \partial_x v), \\
\Box v + v &= F_2(u, v, \partial_t u, \partial_t v, \partial_x u, \partial_x v), \\
\partial_{t^2} u |_{t=0} &= \epsilon_0, \\
\partial_{t^2} v |_{t=0} &= \epsilon_1, \\
v |_{t=0} &= \epsilon v_1,
\end{align*}
\]

with different propagation speeds in multi-space dimension, where \((t, x)\) are coordinates on \(\mathbb{R}^{1+d} \) with \(d \geq 2 \), \(\Box = \partial^2_t - \sum_{j=1}^d \partial_j^2 \) with different propagation speeds in \(d \geq 2 \), \(\Box = \partial^2_t - \partial^2_j \), \(\Box = \partial^2_t - \partial^2_j - \mu^2 \sum_{j=1}^d \partial^2_j \), \(0 < \mu \neq 1 \), \(U(t, x) = (u(t, x), v(t, x)) \), \(u(t, x) = (u_1, \cdots, u_m), v(t, x) = (v_1, \cdots, v_{m_2}) \), \(m = m_1 + m_2 \). We assume that functions \(F_i \) satisfy:

\[
F_1(U, \partial_t U, \partial_x U) = G_0^1(u, v) + \sum_{1 \leq i \leq m_1, 1 \leq j \leq m_2} G_{i,j}^1(u)v_i \partial_j v_j + \sum_{1 \leq i \leq m_1, 1 \leq j \leq m_2} G_{i,j}^2(u)u_i \partial_j v_j \]

and

\[
F_2(U, \partial_t U, \partial_x U) = G_0^2(u, v) + \sum_{1 \leq i \leq m_1, 1 \leq j \leq m_2} \tilde{G}_{i,j}^1(v)\partial_i u_i + \sum_{1 \leq i \leq m_1, 1 \leq j \leq m_2} \tilde{G}_{i,j}^2(v)\partial_i v_j + \sum_{1 \leq i \leq m_1, 1 \leq j \leq m_2} \tilde{G}_{i,j}^3(v)\partial_i u_i \partial_j u_j \]

where \(G_{i,j}^k, \tilde{G}_{i,j}^k \) and \(\tilde{G}_{i,j}^k \), with \(k = 1, 2, \ell = 1, 2, 3 \), are polynomials vanishing at least at order 2 at \(0 \), \(q_k, k = 1, 2, \ell = 1, 2, 3 \), are the bilinear form

\[
q_k(T, X; T', X') = TT' - XX'.
\]

The main theorem is the following:

Theorem 1.1 Let \(N \in \mathbb{N}, N \geq (d + 3)/2 \). There is a constant \(c > 0 \), such that for any pair \((U_0, U_1)\) in the unit ball of \(H^N(\mathbb{R}^d) \times H^{N-1}(\mathbb{R}^d) \), and any \(\epsilon \in [0, 1] \), problem (2) has a unique solution \(U \in C^0([-T_c, T_c], H^N) \cap C^1([-T_c, T_c], H^{N-1}) \) with the existence time \(T_c > c\epsilon^{-2}|\log \epsilon|^{-\alpha} \) with \(\alpha = 2 \) if \(d \geq 3 \) and \(\alpha = 3 \) if \(d = 2 \).

In the whole of the paper, we shall denote by \(\| \cdot \| \) \(L^2 \)-norms, and call “universal constant” a constant which does not depend on the different parameters.

2 Reduction to a Local Problem

We shall use rescaling technique to reduce the proof of the theorem to a local existence problem with Cauchy data of limited smoothness. Let us denote by \(\Delta_0 \) (resp. \(\Delta_1, j \in \mathbb{N}^* \)) the Fourier multiplier on \(L^2(\mathbb{R}^d) \) with symbol \(\phi_0 = \mathbb{1}_{\{|\xi| < 1\}} \) (resp. \(\phi_j = \mathbb{1}_{\{2^{-j-1} < |\xi| < 2^{-j}\}} \)).

Definition 2.1 If \(s \in \mathbb{R}, N \in \mathbb{N} \), we shall denote by \(H^N_0(\mathbb{R}^d) \) (or \(H^N(\mathbb{R}^d, \mathbb{R}^m) \)) the space of families of functions \((u^h)_{h \in [0, 1/2]} \), which are in \(L^2(\mathbb{R}^d) \) for fixed \(h \), such that there is a sequence \((\epsilon_j(h))_j \) in the unit ball of \(\ell^2(\mathbb{N}) \) and \(C > 0 \) satisfying

\[
\| \Delta_j u^h \| \leq Cc_j(h)h^s|\log h|^{-\alpha}(1 + 2^j h)^{-N}.
\]
where we put $\nu = 1$ if $d \geq 3$ and $\nu = \frac{3}{2}$ if $d = 2$. The best constant C in (5) defines the norm $\| (u^h)_h \|_{H^\delta_N}$.

It is not difficult to know that Theorem 1.1 will be a consequence of the following result:

Theorem 2.2 Let N be an integer, $N \geq (d + 3)/2$. There exists $\delta > 0$ such that for any families $(V^h)_h \in [0,1/2]$, (resp. $(W^h)_h \in [0,1/2]$) in $H^\frac{d+1}{N}$ (resp. in $H^\frac{d+1}{N-1}$), of norms in these spaces smaller than δ, the system

\[
\begin{cases}
\Box \mu u^h + \mu^2 \frac{1}{1} u^h = \frac{1}{\sqrt{2}} F_1(u^h, h\partial_t U^h, h\partial_x U^h), \\
\Box u^h + \frac{1}{\sqrt{2}} u^h = \frac{1}{\sqrt{2}} F_2(u^h, h\partial_t U^h, h\partial_x U^h), \\
U^h|_{t=0} = V^h, \partial_t U^h|_{t=0} = W^h
\end{cases}
\]

(6)

has a solution $(U^h)_h \in C^0[-1,1], H^\frac{d+1}{N} \cap C^1[-1,1], H^\frac{d+1}{N-1}$.

We shall define some spaces. If $j,k \in \mathbb{N}$, and $t_\mu \in \{\mu,1\}$, we define

\[
\Phi_{j,k}^{\pm,t_\mu}(\tau, \xi) = \mathbb{I}_{\{t_\mu \geq 0\}} \mathbb{I}_{\{2^{j-1} \leq |\xi| < 2^j\}} \mathbb{I}_{\{2^{k-1} \leq |\tau| \leq t_\mu \sqrt{1+|\xi|^2} \leq 2^k\}}
\]

if $j > 0, k > 0$,

\[
\Phi_{0t}^{\pm,t_\mu}(\tau, \xi) = \mathbb{I}_{\{t_\mu \geq 0\}} \mathbb{I}_{\{|\xi| < 1\}} \mathbb{I}_{\{2^{k-1} \leq |\tau| \leq t_\mu \sqrt{1+|\xi|^2} \leq 2^k\}}
\]

if $k > 0$,

\[
\Phi_{j0}^{\pm,t_\mu}(\tau, \xi) = \mathbb{I}_{\{t_\mu \geq 0\}} \mathbb{I}_{\{2^{j-1} \leq |\xi| < 2^j\}} \mathbb{I}_{\{|\tau| \leq t_\mu \sqrt{1+|\xi|^2} \leq 1\}}
\]

if $j > 0$,

\[
\Phi_{00}^{\pm,t_\mu}(\tau, \xi) = \mathbb{I}_{\{t_\mu \geq 0\}} \mathbb{I}_{\{|\xi| < 1\}} \mathbb{I}_{\{|\tau| \leq t_\mu \sqrt{1+|\xi|^2} \leq 1\}}
\]

Let us define the corresponding Fourier multipliers as

\[
\triangle_{j,k}^{\pm,t_\mu} u = \mathcal{F}^{-1}(\Phi_{j,k}^{\pm,t_\mu}(\tau, \xi) \hat{u}(\tau, \xi))
\]

for $u \in L^2(\mathbb{R}^{1+d})$, where we used Fourier transform and inverse Fourier transform in space-time variables.

Definition 2.3 Let s,s' be real numbers, $N \in \mathbb{N}$. We shall denote by $H^{s,s'}_{N,t_\mu}(\mathbb{R}^{1+d})$ the space of families $(u^h)_h \in [0,1/2]$ of L^2-functions on \mathbb{R}^{1+d}, with values in \mathbb{R} (or in \mathbb{R}^m), such that there is a sequence $(c_{j,k}(h))_{(j,k) \in \mathbb{N}^2}$ satisfying

\[
\sum_{j} \sum_{k} \| c_{j,k}(h) \|^2 \leq 1
\]

and a constant $C > 0$ with

\[
\| \triangle_{j,k}^{s,s'} u^h \| \leq C c_{j,k}(h) \log h^{-\nu} 2^{-2s'}(1 + 2^j h + 2^k h)^{-N}
\]

(7)

for any $j,k \in \mathbb{N}$, $h \in [0,1/2]$, where $t_\mu \in \{\mu,1\}$, $\nu = \frac{3}{2}$ if $d = 2$ and $\nu = 1$ if $d \geq 3$. The best constant C in (7) defines the norm of $(u^h)_h$ in $H^{s,s'}_{N,t_\mu}$.
In the rest of this paper, we shall use the following notation: if \(b(\tau, \xi; \tau', \xi') \) is a locally bounded function on \(\mathbb{R}^{1+d} \times \mathbb{R}^{1+d} \), and if \(f' \) and \(g \) are \(L^2 \) functions with compactly supported Fourier transforms, we shall define \(B(f, g) \) by
\[
B(f, g)(\tau, \xi) = \int f(\tau - \tau', \xi - \xi') \hat{g}(\tau', \xi') b(\tau, \xi; \tau', \xi') \, d\tau' \, d\xi';
\]
(8)
If \(j, j' \) and \(j'' \) are nonnegative integers, we shall set \(j \ll j' \) if \(j \leq j' - 2 \) and \(j \sim j' \) if \(|j - j'| \leq 3 \). Then, if \(u, v \in L^2(\mathbb{R}^{1+d}) \) and \(\Delta_j^{r, r'} u \Delta_j^{r, r'} v \neq 0 \) for \((r, r', r'') \in \{\mu, 1\}^3 \), one has
\[
(j \ll j' \text{ and } j \sim j' \text{ or } (j' \ll j \text{ and } j \sim j' \text{ or } (j'' \geq 5 \text{ and } j \sim j')).
\]
(9)
To study \(B(u, v) \) for \((u, v) \in H^{d+1/2}_{N, r} \times H^{d+1/2}_{N, r'}\), we shall decompose
\[
u = \sum_{e \in \{+,-\}} \sum_{j, k} \Delta_j^e u, \quad \nu' = \sum_{e \in \{+,-\}} \sum_{j, k} \Delta_j^{e'} u',
\]
(10)
and estimate \(\Delta_{j, k}^{e''}(B(u, v)) \). Decompose it from (10) as
\[
\Delta_{j, k}^{e''}(B(u, v)) = \sum_{e, e', j, j', k, k'} \Delta_{j, k}^{e''}(B(\Delta_{j, k}^{e''} u, \Delta_{j, k}^{e''} v))
\]
(11)
for fixed \(e'' \in \{+,-\}, j'', k'' \in \mathbb{N}, T = (r, r', r'') \in \{\mu, 1\}^3 \). Using the same proof as that in [2], we have

Lemma 2.4 There is a positive constant \(C \) such that for any \(J = (j, j', j'') \in \mathbb{N}^{3}, K = (k, k', k'') \in \mathbb{N}^{3}, E = (e, e', e'') \in \{+,-\}^{3} \) and \(T = (r, r', r'') \in \{\mu, 1\}^{3} \), we have
\[
\| \Delta_{j, k}^{e''}(B(\Delta_{j, k}^{e''} u, \Delta_{j, k}^{e''} v)) \| \leq C 2^{\frac{3}{2} + \frac{\mu}{2}} \| b \|_{L^{\infty}(A(T, J, K, E)))} \| \Delta_{j, k}^{e''} u \| \| \Delta_{j, k}^{e''} v \|
\]
where \(\tilde{j} = \min(j, j', j'') \), \(\tilde{k} = \min(k, k', k'') \).

3 Microlocal estimates

Theorem 3.1 Let \(M_0 \) be a fixed positive integer. There is a constant \(C > 0 \) such that for any \((j, j', j'') \in \mathbb{N}^{3}, k \leq k' \leq k'' \in \mathbb{N}^{3}, \) \(e \in \{+,-\} \) and \(T = (r', r'', r'') \in \{\mu, 1\}^{3} \),
\[
\| \Delta_{j, k}^{e''}(B(\Delta_{j, k}^{e''} u, \Delta_{j, k}^{e''} v)) \| \leq C 2^{\frac{3}{2} + \frac{\mu}{2}} \| b \|_{L^{\infty}(A(T, J, K, E)))} \| \Delta_{j, k}^{e''} u \| \| \Delta_{j, k}^{e''} v \|
\]
(12)
for \(r \neq r' \).
\[
\| \Delta_{j, k}^{e''}(B(\Delta_{j, k}^{e''} u, \Delta_{j, k}^{e''} v)) \| \leq C 2^{\frac{3}{2} + \frac{\mu}{2}} \| b \|_{L^{\infty}(A(T, J, K, E)))} \| \Delta_{j, k}^{e''} u \| \| \Delta_{j, k}^{e''} v \|
\]
(13)
for \(r = r' \).
\[
\| \Delta_{j, k}^{e''}(B(\Delta_{j, k}^{e''} u, \Delta_{j, k}^{e''} v)) \| \leq C 2^{\frac{3}{2} + \frac{\mu}{2}} \| b \|_{L^{\infty}(A(T, J, K, E)))} \| \Delta_{j, k}^{e''} u \| \| \Delta_{j, k}^{e''} v \|
\]
(14)
for all \(T \), where \(\tilde{j} = \min(j, j', j'') \), \(\tilde{j} = \max(j, j', j'') \), \(T = (r', r'', r'') \in \{\mu, 1\}^{3} \).
Remark that if \(j = 0 \), estimates (12), (13) and (14) are implied by inequality (12). As a consequence, we will be free in the sequel to assume \(j > 0 \), \(j' > 0 \), \(j'' > 0 \). We put \(f = \Delta_{jk}^{+}u \),
\(g = \Delta_{jk}^{+}v \) and study the \(L^2 \) norm of

\[
I_{\pm}^\pm (\tau, \xi) = \Phi_{jk}^{\pm'}(\tau, \xi) \int f(\tau - \tau', \xi - \xi') \hat{g}(\tau', \xi') b(\tau, \xi; \tau', \xi') \, d\tau' d\xi'.
\]

(15)

By the preceding remark, we will always have \(|\xi| > 1 \), \(|\xi'| > 1 \), \(|\xi - \xi'| > 1 \). Let us remark that it is equivalent to prove (2.1.1) or the corresponding inequality in which \(\Delta_{jk}^{+}u, \Delta_{jk}^{+}v \) is replaced by \(\Delta_{jk}^{-}u, \Delta_{jk}^{+}v \), for \(\Delta_{jk}^{-}u = \Delta_{jk}^{+}u, \Delta_{jk}^{+}v = \Delta_{jk}^{+}v \).

To prove theorem 2.1.1, we define two functions depending on \(h \) on \(\mathbb{R}^{1+d} \times \mathbb{R}^{1+d}, \) for \(k \in \mathbb{N}, \ell \in \mathbb{Z} \), as

\[
F_\pm^\mu(\xi, \xi') = \mu \sqrt{h^{-2} + (\xi - \xi')^2} \pm \sqrt{h^{-2} + \xi'^2},
\]

(16)

\[
\lambda_\pm^\mu(\xi, \xi') = 1_{\{\xi^2 < F_\pm^\mu(\xi, \xi') < (\ell + 1)^2\}}.
\]

(17)

Put

\[
\theta = 2^{-j'} \xi, \theta' = 2^{-j'} \xi'.
\]

We have \(1/2 \leq |\theta| \leq 1, 1/2 \leq |\theta'| \leq 1 \) since in the integrand of (15) we have \(\xi \in \text{Supp} \phi_{jk}^\nu \) and \(\xi' \in \text{Supp} \phi_{jk}^\nu \). Let us define also

\[
\rho = 2^{j'-j}, \sigma = (1 + 2^j h)^{-1}, m = 1 - \sigma = 2^j h (1 + 2^j h)^{-1},
\]

(18)

and for a given positive number \(M \),

\[
K_M = \{(\theta, \theta', \sigma, \rho) \in \mathbb{R}^{1+d} \times \mathbb{R}^{1+d} \times [0, 1] \times [0, M]; 1/2 \leq |\theta| \leq 1, 1/2 \leq |\theta'| \leq 1 \}.
\]

(19)

We rescale \(F_\pm^\mu \) defining the following functions on \(K_M \):

\[
G_\pm^\mu(\theta, \theta', \sigma, \rho) = h(1 + 2^j h)^{-1} F_\pm^\mu(2^{j'} \theta, 2^{j'} \theta')
\]

\[
= \mu (\sigma^2 + m^2 (\rho \theta - \theta')^2)^{1/2} \pm (\sigma^2 + m^2 \theta'^2)^{1/2}.
\]

(20)

Lemma 3.2 i). The function \(\theta' \rightarrow G_\pm^\mu(\theta, \theta', \sigma, \rho) \) has no critical point if \(\sigma \leq \sqrt{1 - \mu^2} \).

ii). The critical point, \(\theta_\pm \), of the function \(\theta' \rightarrow G_\pm^\mu(\theta, \theta', \sigma, \rho) \), if it exists, is unique on \(K_M \) and is collinear to the parameter \(\theta \). Let \(\theta_\pm = \frac{\rho \theta}{1 + \lambda_\pm} \), we have \(\frac{1}{\mu} \leq |\lambda_\pm| \leq C(M) \) with some positive number \(C(M) \) depending only on \(M \).

proof: From

\[
\nabla_{\theta'} G_\pm^\mu(\theta, \theta', \sigma, \rho) = \frac{-\mu m^2 (\rho \theta - \theta')}{\sigma^2 + m^2 (\rho \theta - \theta')^2} \pm \frac{m^2 \theta'}{\sqrt{\sigma^2 + m^2 \theta'^2}} = 0
\]

(21)

we know that \(\rho \theta - \theta' \) and \(\theta' \) are collinear, and hence there is some constant \(\lambda_\pm \) so that \(\rho \theta - \theta' = \lambda_\pm \theta' \). Obviously \(\lambda_\pm \neq 0 \) and \(1 + \lambda_\pm \neq 0 \). It follows from (21) that

\[
\pm \lambda_\pm > 0 \quad \text{and} \quad \frac{\sigma^2 + m^2 \theta'^2}{(\lambda_\pm^2 - 1) \sigma^2} = \frac{1}{\mu^2 - 1},
\]

(22)
which means $|\lambda_\pm| > 1$ because of $0 < \mu < 1$. Denote by

$$K(\lambda) = \frac{\sigma^2 + m^2\theta^2}{(\lambda^2 - \lambda_\pm^2)\sigma^2} = \frac{1 + \frac{m^2\rho^2\theta^2}{(1 - \lambda_\pm^2)\sigma^2}}{1 - \frac{1}{\lambda^2}}.$$

It is obvious that $K(\lambda)$ is a strictly decreasing function when $\lambda > 1$ and is a strictly increasing function when $\lambda < -1$. Moreover we have

$$K(\pm\mu^{-1}) > \frac{1}{1 - \mu^2} \quad \text{and} \quad \lim_{\lambda \to \pm\infty} K(\lambda) = \frac{1}{1 - \mu^2}.$$

Then the system

$$\pm \lambda > 0, K(\lambda) = \frac{1}{1 - \mu^2}$$

has a unique solution λ_\pm with $|\lambda_\pm| > \frac{1}{\mu}$, and hence $G^\mu_\pm(\theta', \sigma, \rho)$ has a unique critical point.

That $\sigma \geq \sqrt{1 - \frac{\mu^2}{3}}$ follows from (2.1.13), the assumption $m + \sigma = 1$ and $\frac{1}{2} \leq |\theta'| \leq 1$. What remains is to prove that $|\lambda_\pm| < C(M)$ for some positive constant. By $K(\lambda_\pm) = \frac{1}{1 - \mu^2}$, $\sigma \geq \sqrt{1 - \frac{\mu^2}{3}}$ and $|\lambda_\pm| \geq \frac{1}{\mu}$ we know

$$\frac{1}{1 - \mu^2} \leq \frac{1 + M^2(1 + \lambda_\pm)^{-2}\sigma^{-2}}{1 - \lambda_\pm^{-2}} \leq \frac{1 + 9M^2(1 + \lambda_\pm)^{-2}(1 - \mu^2)^{-1}}{1 - \lambda_\pm^{-2}}.$$ (23)

Notice that

$$0 < \mu < 1, \quad \frac{1 + 9M^2(1 + \lambda_\pm)^{-2}(1 - \mu^2)^{-1}}{1 - \lambda_\pm^{-2}} \to 1 \quad \text{as} \quad \lambda_\pm \to \pm\infty.$$

We deduce from (23) that there exists a positive constant $C(M)$, depending only on M, such that $|\lambda_\pm| \leq C(M)$. □

In the sequel, we will write $\theta' = (\theta'_1, \theta''_1) \in \mathbb{R} \times \mathbb{R}^{d-1}$ and $\theta = |\theta|(1, 0, \ldots, 0)$. It follows from Lemma 3.2 that the critical point, θ_\pm, of the function $\theta' \to G^\mu_\pm(\theta', \sigma, \rho)$, if it exists, is unique on K_M. Let us define

$$D_\pm = \left\{ (\theta, \theta', \sigma, \rho) \in K_M : \theta' = \theta_\pm, \sigma \geq \sqrt{1 - \frac{\mu^2}{3}} \right\}. \quad (24)$$

Lemma 3.3 For any $M > 0$ and any neighborhood V_\pm of D_\pm in K_M, there is a positive constant C and a real valued C^1 function H_\pm, defined on a neighborhood of the set $K_M - V_\pm$, such that

$$H_\pm \quad \text{is bounded on} \quad K_M - V_\pm, \quad C^{-1} \leq |\nabla_{\theta'} H_\pm(\theta, \theta', \sigma, \rho)| \leq C \quad \text{on} \quad K_M - V_\pm,$$

$$G_\pm(\theta, \theta', \sigma, \rho) = (\mu \pm 1)\sigma + m^2 H_\pm(\theta, \theta', \sigma, \rho) \quad \text{on} \quad K_M - V_\pm. \quad (25)$$

proof: Denote by

$$H_\pm = \frac{G_\pm - (\mu \pm 1)\sigma}{m^2}.$$
We first prove the boundedness of H_{\pm}. When $m \geq 1/2$, it is obvious that $|H_{\pm}| \leq C$ for some positive number C. When $0 \leq m \leq 1/2$, we have $\sigma = 1 - m \geq 1/2$ and

$$H_{\pm} = \frac{\mu (\rho - \theta')^2}{(\sigma^2 + m^2(\rho - \theta')^2)^{1/2}} + \frac{\theta^2}{(\sigma^2 + m^2\zeta \theta')^2)^{1/2}}$$

for some $\zeta \in (0, 1)$, and hence $|H_{\pm}| \leq C$ since $(\sigma^2 + m^2(\rho - \theta')^2) \geq 1/4$, $|\rho - \theta'| \leq M + 1$ and $1/2 \leq |\theta'| \leq 1$. Notice that

$$\nabla_{\theta'} H_{\pm} = \frac{-\mu (\rho - \theta')}{(\sigma^2 + m^2(\rho - \theta')^2)^{1/2}} \pm \frac{\theta'}{(\sigma^2 + m^2\zeta \theta')^2)^{1/2}}.$$

Since $|\nabla_{\theta'} H_{\pm}|_{(\sigma = 0)} = |\mu + 1| > 0$, we can choose $\sigma_0 > 0$ small so that

$$|\nabla_{\theta'} H_{\pm}| \leq 2|\mu + 1| \text{ on the set } K_M \cap \{\sigma = \sigma_0\}.$$

On the compact set $K_M \cap \{\sigma \geq \sigma_0\}$, the norm $|\nabla_{\theta'} H_{\pm}|$ is a continuous function and vanishes only if $\theta' = \theta_{\pm}$. The boundedness of $|\nabla_{\theta'} H_{\pm}|$ now follows from the definition of V_{\pm}.

Let us introduce, for δ small positive number, the following open subsets of K_M:

$$V_{\pm}^\delta = \left\{ (\theta, \theta', \sigma, \rho) \in K_M; |\theta' - \theta_{\pm}| < \delta, \sigma > \frac{\sqrt{1 - \mu^2}}{6} \right\} \quad (26)$$

Lemma 3.4 Let M be a fixed positive number. There is $C > 0$, $\delta > 0$, and two real valued C^1 functions H_{\pm}^n and H_{\pm}^2, defined on an open neighborhood of $V_{\pm}^\delta \cap \{\rho > 0\}$, bounded with bounded first θ'-derivative on $V_{\pm}^\delta \cap \{\rho > 0\}$, such that

$$C^{-1} \leq |H_{\pm}^n(\theta, \theta', \sigma, \rho)| \leq C, \quad n = 1, 2, \quad (27)$$

$$G_{\pm}^\mu(\theta, \theta', \sigma, \rho) = G_{\pm}^\mu(\theta, \theta_{\pm}, \sigma, \rho) + m^2 \sigma^2 (\theta' - \theta_{\pm})^2 H_{\pm}^1(\theta, \theta', \sigma, \rho) + m^2 \sigma^2 H_{\pm}^2(\theta, \theta', \sigma, \rho)$$

on $V_{\pm}^\delta \cap \{\rho > 0\}$.

proof: Denote by

$$\theta = |\theta|(1, 0, \cdots, 0), \theta' - \theta_{\pm} = \eta = (\eta_1, \eta''), \quad A = [\sigma^2 + m^2(\rho - \theta_{\pm})^2]^{1/2}, \quad B = [\sigma^2 + m^2\theta_{\pm}^2]^{1/2}.$$

Then $\eta_1 = \theta' - \theta_{\pm}$, $\eta'' = \theta''$, $\theta_{\pm} = \frac{1}{1 + \lambda_{\pm}} |\theta|(1, 0, \cdots, 0)$ and

$$G_{\pm}^\mu(\theta, \theta', \sigma, \rho) = \mu A \left[1 + \frac{-2m^2(\rho - \theta_{\pm})\eta_1 + m^2\eta_2^2}{A^2} \right]^{1/2} \pm B \left[1 + \frac{2m^2\theta_{\pm} \eta_1 + m^2\eta_2^2}{B^2} \right]^{1/2}$$

$$= G_{\pm}^\mu(\theta, \theta_{\pm}, \sigma, \rho) + \mu \frac{(\rho - \theta_{\pm})^2}{4A^2} \eta_1 + \frac{\mu}{2B^2} \eta_1 \eta_2 + \frac{\mu}{12A^2} m^2 \sigma^2 \eta_1^2$$

$$+ \frac{\mu}{12A^2} M^2 \eta_2^2 + g_6 m^4 \eta_1^3 + g_6 m^4 \eta_1^3,$$

where $g_i (i = 1, 2, \cdots, 6)$ are bounded continuous functions on K_M. Notice that $\pm \lambda_{\pm} > 1/\mu$, $\sqrt{1 - \mu^2}/\sigma \leq A \leq C$, $\sqrt{1 - \mu^2}/\sigma \leq B \leq C$. Using $\nabla_{\theta'} G_{\pm}^\mu(\theta, \theta_{\pm}, \sigma, \rho) = 0$ and Lemma (3.2) we have

$$-\mu A (\rho - \theta_{\pm}) + \theta_{\pm} B = 0.$$
\[\frac{\mu}{2} (2^{\mu} - 1) \leq \frac{\mu}{2A} \pm \frac{1}{2B} = \frac{\mu|\theta|}{2A} \leq \frac{\mu(1 + \lambda_{\pm})}{2A} \leq \frac{\mu(1 - \mu)(1 + C(M))}{2\mu}, \]

and

\[C \leq \frac{\mu}{2A^3} \pm \frac{1}{2B^3} = \frac{\mu}{2A} \left(1 + \frac{\lambda_{\pm}}{\sigma^2} + \frac{m^2 \theta^2}{A^2 B^2} \right) \geq \frac{1}{C} > 0. \]

Let

\[H^1_+ = \frac{\mu}{2A^3} \pm \frac{1}{2B^3} + \frac{g_0 m^2 \eta_1}{\sigma^2}, \quad H^2_+ = \frac{\mu}{2A} \pm \frac{1}{2B} + g_0 m^2 \eta''. \] (28)

The conclusion now follows from (28) and the fact \(\sigma \geq \frac{\sqrt{1 - \mu^2}}{6} \) and \(|\eta| < \delta \) small. \(\square \)

4 Proof of Theorem 3.1

We first prove the case \(r \neq r' \). Without loss of generality, let us consider the case \(r = \mu, r' = 1 \), that is, we want to estimate the integral (15) with \(f = \Delta^{\pm}_{k=1} u, g = \Delta^{\pm}_{k=1} v \). Remember that we assumed \(|j - j'| \leq M_{\delta} \). Together with condition (9), this implies that \(\rho = 2^{j'' - j'} \) stays smaller than a fixed positive constant \(M \). For \(\delta > 0 \) and \(\xi_{\pm} = 2^j \theta_{\pm} \) we denote by

\[W^\delta_{\pm} = \left\{ (\xi, \xi') : \xi \in \text{Supp} \phi_{j''}, \xi' \in \text{Supp} \phi_{j'}, |\xi - \xi_{\pm}| < \delta 2^{j'}, \sigma \geq \frac{\sqrt{1 - \mu^2}}{6} \right\}, \]

and split \(\mathcal{I}_{\pm} = \mathcal{I}_{\pm} + \mathcal{I}_{\pm} \) where

\[\mathcal{I}_{\pm} = \Phi_{j''} \int \hat{f} (\tau', \xi - \xi') \hat{g} (\tau', \xi') b (\tau, \xi; \xi', \xi') \mathbb{I}_{W^\delta_{\pm}} d\tau' d\xi'. \] (29)

To estimate \(\mathcal{I}_{\pm} \), we introduce a result considered in [3] (Lemma 2.1.3 and Lemma 2.1.4). For any triple \((j, j', j'')\) and any real number \(R \in [0, 2] \), let us fix a finite partition of \(\mathbb{R}^d - \{0\} \) in conical subdomain, \((\gamma_a)_{a \in S}, \) where \(S \) is a finite subset of \(S^{d-1} \), such that there is a universal constant \(c > 0 \) with

\[\left\{ \xi', \xi'' \in \mathbb{R}^d - \{0\}, \left| \frac{\xi'}{|\xi'|} - a \right| < c 2^{j'' - j} R \right\} \subset \gamma_a \subset \left\{ \xi', \xi'' \in \mathbb{R}^d - \{0\}, \left| \frac{\xi'}{|\xi'|} - a \right| < 2^{j'' - j} R \right\}. \]

Set \(\mathcal{P} = \mathbb{N} \times S \) and for \(p = (q, a) \in \mathcal{P} \) define

\[Q_p = \{ \xi' : 2^{j'' - 1} \leq |\xi'| \leq 2^{j'}, q 2^{j''} \leq |\xi'| \leq (q + 1) 2^{j''}, \xi' \in \gamma_a \}, \]

\[\hat{Q}_p = \{ \eta : 2^{j'' - 1} \leq |\eta| \leq 2^{j'}, \text{ and } \exists (\xi, \xi') \text{ with } 2^{j'' - 1} \leq |\xi| \leq 2^{j'}, \xi' \in Q_p, \}

\[\eta = \xi - \xi', |\xi' - (\xi' \frac{\xi}{|\xi'|} \frac{\xi}{|\xi'|})| \leq R 2^{j'} \}. \]

Then there is a universal constant \(C > 0 \) such that

\[1 = \sum_{p \in \mathcal{P}} \| Q_p \| \leq C. \]

Estimate of \(\mathcal{I}^n_{\pm} \)
We have $T''_\pm = \sum_{p \in \mathcal{P}} T''_{\pm p}$ with
\[
T''_{\pm p} = \Phi^{\ell'', r''}_{j'' k''} \int \tilde{f}(\tau - \tau', \xi - \xi') \tilde{g}_p(\tau', \xi') b(\tau, \xi; \tau', \xi') \mathbb{I}_{-W^2_\pm} \, d\tau' \, d\xi',
\]
where $\tilde{f}_p = \tilde{f} \mathbb{1}_{Q_p}$, $\tilde{g}_p = \tilde{g} \mathbb{1}_{Q_p}$. We write also $T''_{\pm p} = \sum \ell \ell' T''_{\pm p, \ell}$ with
\[
T''_{\pm p, \ell} = \Phi^{\ell'', r''}_{j'' k''} \int \tilde{f}(\tau - \tau', \xi - \xi') \tilde{g}_p(\tau', \xi') b(\tau, \xi; \tau', \xi') \mathbb{I}_{-W^2_\pm} \chi^{\ell''}_{\pm}(\xi, \xi') \, d\tau' \, d\xi'.
\]
The absolute value of $T''_{\pm p, \ell}$ is smaller than
\[
2^{k'} \phi_j(\xi) \left(\int |\tilde{f}(\tau - \tau', \xi - \xi')|^2 |\tilde{g}_p(\tau', \xi')|^2 |b|^{2} \mathbb{I}_{-W^2_\pm} \chi^{\ell''}_{\pm}(\xi, \xi') \, d\tau' \, d\xi' \right)^{1/2} \times \left(\int \chi^{\ell, \mu}_{\pm}(\xi, \xi') \mathbb{I}_{Q_p}(\xi) \mathbb{I}_{W^2_\pm} \, d\xi' \right)^{1/2}.
\]
The last integral is bounded from above by
\[
2^{j''} \int \mathbb{1}_{\{\ell L^{-1/2} \leq H_\pm \leq (\ell+1) L^{-1/2}\}} \mathbb{I}_{-W^2_\pm} \chi^{\ell''}_{\pm}(\xi, \xi') \, d\tau' \, d\xi' \, Q(\xi) \, d\theta',
\]
where \tilde{Q}, obtained from Q_p by rotation, is contained in a cube of diameter $C2^{j''}$. Using Lemma 3.3, (31) can be controlled by
\[
2^{j''} \int \mathbb{1}_{\{\ell L^{-1/2} \leq H_\pm \leq (\ell+1) L^{-1/2}\}} \mathbb{I}_{-W^2_\pm} \chi^{\ell''}_{\pm}(\xi, \xi') \, d\tau' \, d\xi' \, Q(\xi) \, d\theta'
\]
with $L = 2^{k-j''}$. Since $\frac{1}{2} \leq |\nabla \phi_j| \leq C$, we can cover the domain of integration by a universally bounded finite number local charts, over which H_\pm can be taken as a local coordinate satisfying universal bounds. This allows us to bound (32) by
\[
C 2^{j''} \frac{2^{k-j''}}{m} 2^{(d-j'')(d-1)}.
\]
Plugging into (30), using almost orthogonality and summing in ℓ and p, we get
\[
\|T''_\pm\| \leq C 2^{j''} \frac{2^{k-j''}}{m} 2^{(d-j'')(d-1)} \|f\| \|g\|
\]
(33) since $|j-j''| \leq M_0$ implies that j'' can be controlled by j.

Estimate of T'_\pm

We set $\xi' = \xi'_\pm + 2^{j'} \eta$, and let us decompose $T'_\pm = \sum \ell T'_\pm \ell$ with
\[
T'_\pm \ell(\tau, \xi) = \Phi^{\ell', r'}_{j' k'} \int \tilde{f}(\tau - \tau', \xi - \xi') \tilde{g}(\tau', \xi') b(\tau, \xi; \tau', \xi') \mathbb{I}_{W^2_\pm} \, d\tau' \, d\xi'.
\]
Using almost orthogonality (see [3]), we have $\|T'_\pm\| \leq C(\sum_{\ell} \|T'_\pm \ell\|^2)^{1/2}$ and
\[
|T'_\pm \ell| \leq 2^{j'/2} \left(\int |\tilde{f}(\tau - \tau', \xi - \xi')|^2 |\tilde{g}(\tau', \xi')|^2 b^2 \chi^{\ell', \mu}_{\pm}(\xi, \xi') \, d\tau' \, d\xi' \right)^{1/2} \times 2^{j'/2} \left(\int \mathbb{1}_{W^2_\pm(\xi, \xi' + 2^{j'} \eta)} \chi^{\ell', \mu}_{\pm}(\xi, \xi' + 2^{j'} \eta) \, d\eta \right)^{1/2}.
\]
(34)
\[\int \mathbb{1}_{\{|\eta'|<\delta, |\eta_1'|<\delta\}^2} (e^{L-T-c\frac{\eta_1^2}{H_\pm^1} + \eta'\sigma^2 H_\pm^2 < (\ell+1)L-T}) \, d\eta; \]

where \(L = 2^{k-j}/m, T = G^m_\pm(\theta, \theta', \sigma, \rho)/m^2 \). Performing the change of variables inverse to \(w_1 = \eta_1(H_\pm^1)^{\frac{j}{2}} \) and \(w_2 = \eta''(H_\pm^2)^{\frac{j}{2}} \), we get the upper bound of (35)

\[C \int \mathbb{1}_{\{|w_1|+w_2|\leq C\delta\}^2} (e^{L-T-c\frac{\eta_1^2}{w_1^2} + \eta'\sigma^2 w_2^2 < (\ell+1)L-T}) \, dw_2 \leq C2^{k-j'}(1+2^{j}h)^2(2^{j'}h)^{-1}. \]

Plugging into (34), using the fact that \(j' \) can be controlled by \(j \) and summing in \(\ell \) we obtain

\[\|I_\pm\| \leq C2^{j} \mathbb{I}_{\pm \gamma} + \frac{j}{2} (1+2^{j}h)^{\frac{j}{2}} (2^{j'}h)^{-\frac{j}{2}} \|b\| \|f\| \|g\|. \]

For the case of \(r = r' \) in Theorem 3.1, we can get the conclusion from Theorem 2.1.1 in [3].

We wish to bound \(\|\Delta_{j'k'}^m \theta'\theta''(B(\Delta_{j,k}^+ u, \Delta_{j,k}^+ r'v))\| \) when \(k' \leq k \leq k'' \), \(e'' = \pm \) and \(j \) is much smaller than \(j' \sim j'' \) or \(j' \) much smaller than \(j \sim j'' \). We will study only the second case, since the first one is similar. The result is the following one:

Proposition 4.1 There is a positive integer \(N_0 \) such that if \(j' \leq j'' - N_0, k' \leq k \leq k'' \) and \((r,r',r'')\in\{\mu,1\}\), one has a universal constant \(C \) with

\[\left\| \Delta_{j'k'}^m \theta'\theta''(B(\Delta_{j,k}^+ u, \Delta_{j,k}^+ r'v)) \right\| \leq C2^{j} \mathbb{I}_{\pm \gamma} + \frac{j}{2} (1+2^{j}h)^{\frac{j}{2}} (2^{j'}h)^{-\frac{j}{2}} \|b\| \|f\| \|g\|. \]

To prove this proposition, we shall use the following notations

\[\xi = 2^{j'} \theta, \xi' = 2^{j'} \theta', \sigma = (1+2^{j'}h)^{-1}, m = 2^{j''}h(1+2^{j'}h)^{-1}, \rho = 2^{j'-j'}. \]

We will have \(1/2 \leq |\theta| \leq 1, 1/2 \leq |\theta'| \leq 1 \) and \(\rho \) small. As before, we set \(\theta = |\theta|(1,0, \ldots, 0), \theta' = (\theta', \theta'') \). Let us also set

\[\begin{align*}
G^m_\pm(\theta, \theta', \sigma, \rho) & = h(1+2^{j'}h)^{-1}F^m_\pm(2^{j'} \theta, 2^{j'} \theta') \\
& = \mu(\sigma^2 + m^2(\theta - \rho \theta'))^{1/2} \pm (\sigma^2 + m^2 \rho^2 \theta^2)^{1/2}
\end{align*} \]

if \(r = 1, r' = \mu \). We shall study the local behavior of \(G^m_\pm \). For \(\delta > 0 \) small, let us define

\[\begin{align*}
V_\pm^\delta & = \{ (|\theta|, \theta', \sigma, \rho); 1/2 \leq |\theta| \leq 1, 1/2 \leq |\theta'| \leq 1, \rho \in [0,1], \sigma \in [0,1], \\
& \quad \sigma/\rho < \delta, \pm \theta' > 0, |\theta''| < \delta \}, \\
K_\pm^\delta & = \{ (|\theta|, \theta', \sigma, \rho); 1/2 \leq |\theta| \leq 1, 1/2 \leq |\theta'| \leq 1, \rho \in [0,1], \sigma \in [0,1] \} - V_\pm^\delta
\end{align*} \]

Lemma 4.2 i) There is \(\delta > 0, C > 0 \), and a real valued \(C^1 \) function, \(H_\pm \), defined on an open neighborhood of \(V_\pm^\delta \), such that on \(V_\pm^\delta \cap \{ \rho < \delta \} \)

\[\begin{align*}
G^m_\pm(\theta, \theta', \sigma, \rho) & = \mu |\theta| + \rho m H_\pm(\theta, \theta', \sigma, \rho), \\
|H_\pm(|\theta|, \theta', \sigma, \rho)| & \leq C, C^{-1} \leq |\partial H_\pm(\theta, \theta', \sigma, \rho)| \leq C.
\end{align*} \]
ii) For any fixed $\delta > 0$ small, there is $\rho_0 > 0$, $C > 0$ and a real valued C^1 function, H_{\pm}, defined on an open neighborhood of $K_{\pm}^\delta \cap \{ \rho < \rho_0 \}$, such that on $K_{\pm}^\delta \cap \{ \rho < \rho_0 \}$

$$G^\mu_\pm (|\theta|, \theta', \sigma, \rho) = \pm \sigma + \mu (\sigma^2 + m^2 \theta^2)^{1/2} + \rho m^2 H_{\pm} (|\theta|, \theta', \sigma, \rho),$$

$$|H_{\pm} (|\theta|, \theta', \sigma, \rho)| \leq C, \quad C^{-1} \leq |\nabla \theta | H_{\pm} (|\theta|, \theta', \sigma, \rho)| \leq C. \quad (40)$$

Proof: i) Set $\nu = \frac{\mu \sigma}{m \rho}$ and write

$$G^\mu_\pm (|\theta|, \theta', \sigma, \rho) = \mu m |\theta| - m \rho (\sigma_1 + |\theta'|) + \frac{m \rho (\theta'' - \nu)}{2} \left(\frac{\mu \rho}{|\theta| - \rho \theta_1} \pm 1 - (\theta'' - \nu)^2 g_1 \pm g_2 \right)$$

where $|\theta| - \rho \theta_1 \geq \frac{1}{4}, |\theta'| \geq \frac{1}{4}, g_1$ and g_2 are two bounded C^1 functions on V_{\pm}^δ for δ small. Denote by

$$H_{\pm} = (1 \pm \mu) \theta_1 + \frac{\theta'' - \nu}{2} \left(\frac{\mu \rho}{|\theta| - \rho \theta_1} \pm 1 - (\theta'' - \nu)^2 (g_1 \pm g_2) \right).$$

Obviously we have on V_{\pm}^δ, for δ small,

$$G^\mu_\pm (|\theta|, \theta', \sigma, \rho) = \mu m |\theta| + \rho m H_{\pm} (|\theta|, \theta', \sigma, \rho),$$

$$|H_{\pm} (|\theta|, \theta', \sigma, \rho)| \leq C, \quad 1 - \frac{\mu}{2} \leq \left| \frac{\partial H_{\pm}}{\partial \theta_1} (|\theta|, \theta', \sigma, \rho) \right| \leq 2(1 - \mu).$$

ii) Let

$$H_{\pm} = \frac{1}{m^2 \rho} \left[G^\mu_\pm (|\theta|, \theta', \sigma, \rho) - \mu (\sigma^2 + m^2 \theta^2)^{1/2} \pm \sigma \right]. \quad (41)$$

This definition implies at once that H_{\pm} is bounded. For $\rho < \rho_0$ small, we have

$$\nabla \theta_1 H_{\pm} = -\frac{\mu |\theta|}{(\sigma^2 + m^2 \theta^2)^{1/2}} \pm \frac{\rho \theta_1}{(\sigma^2 + m^2 \rho \theta^2)^{1/2}} + \rho g_1$$

where g_1 is a bounded function. Obviously $|\nabla \theta_1 H_{\pm}| \leq C$ on K_{\pm}^δ and

$$|\nabla \theta_1 H_{\pm}|_{|\sigma| = 0} \geq |\mu \pm 1| \geq 1 - \mu > 0.$$

Hence there exists a small positive number σ_0 such that $|\nabla \theta_1 H_{\pm}| \geq \frac{1 - \mu}{2}$ on $K_{\pm}^\delta \cap \{ 0 \leq \sigma \leq \sigma_0 \}$. For $\sigma_0 \leq \sigma \leq 1$, we can choose $\rho_0 > 0$ small so that

$$|\nabla \theta_1 H_{\pm}| \geq \frac{\mu}{4} \geq |\nabla \theta_1 | \rho g_1 \geq \frac{\mu}{16} > 0.$$

Then, we have $\frac{1}{8} \leq |\nabla \theta_1 H_{\pm}| \leq C$ on $K_{\pm}^\delta \cap \{ \rho < \rho_0 \}$ for ρ_0 small. \(\square\)

Lemma 4.3 There is a positive integer N_0 such that if $j' \leq j'' - N_0$, $k' \leq k \leq k''$, one has a universal constant C with

$$\left\| \Delta^\mu_{j''} \nabla^{j'} (B(\Delta^+_{jk} \hat{u}, \Delta^\pm_{j'k'} \hat{v})) \right\| \leq 2^{j - j' + \frac{1}{2} + \frac{k'}{2}} (1 + 2^2 h)(2^2 h)^{-\frac{1}{2}} \times |b|_{L^\infty(A^\gamma_{j,k,E})} \left\| \Delta^+_{j'k'} \hat{u} \right\| \| \Delta^\pm_{j'k'} \hat{v} \| \left\| \nabla^{j'} (B(\Delta^+_{j'k'} \hat{u}, \Delta^\pm_{j''k''} \hat{v})) \right\|. \quad (42)$$
proof: If \(r = r' \), the result comes from Proposition 2.3.1 in [3]. If \(r \neq r' \), without loss of generality, we consider the case \(r = \mu, r' = 1 \). To do this, we denote \(f = \Delta_{j_k}^{+} u, g = \Delta_{j_k}^{-1} v \) and

\[
\mathcal{I}_{\pm} = \Phi_{j_k}^{e'\mu'} \int \hat{f}(\tau - \tau', \xi - \xi') \hat{g}(\tau', \xi') b(\tau, \xi; \tau', \xi') d\tau' d\xi'.
\]

Let us define

\[
W_{\delta} = \{(\xi, \xi'); 2^{j''-1} \leq |\xi| \leq 2^{j''}, 2^{j'-1} \leq |\xi'| \leq 2^{j'}, 2^{j''} - j'(1 + 2^{j''} h)^{-1} < \delta, \pm \xi' > 0, |\xi'| < 2^{j'} \delta\}
\]

and decompose \(\mathcal{I}_{\pm} = \mathcal{I}_{\pm}' + \mathcal{I}_{\pm}'' \) with

\[
\mathcal{I}_{\pm}' = \Phi_{j_k}^{e'\mu'} \int \hat{f}(\tau - \tau', \xi - \xi') \hat{g}(\tau', \xi') b_{\pm}(\xi, \xi') W_{\pm}^{1} d\tau' d\xi',
\]

where \(\delta \) is fixed so that Lemma 4.2 is true. Taking the integer \(N_0 \) of the statement of proposition 4.1 large enough, we may assume that \(\rho \) is smaller than \(\rho_0 \) of Lemma 4.2 ii).

Estimate of \(\mathcal{I}_{\pm}' \)

We write \(\mathcal{I}_{\pm}' = \sum_{\ell=0}^{+\infty} \mathcal{I}_{\pm}'^{\ell} \) with

\[
\mathcal{I}_{\pm}'^{\ell} = \Phi_{j_k}^{e'\mu'} \int \hat{f}(\tau - \tau', \xi - \xi') \hat{g}(\tau', \xi') b_{\pm}(\xi, \xi') W_{\pm}^{1} d\tau' d\xi'.
\]

and get

\[
|\mathcal{I}_{\pm}'^{\ell}| \leq \phi_{j''}(\xi) \left(\int |\hat{f}(\tau - \tau', \xi - \xi')|^2 |\hat{g}(\tau', \xi')|^2 |b|^2 \chi_{\pm}(\xi, \xi') d\tau' d\xi' \right)^{1/2}
\times 2^{k'/2} \left(\int W_{\pm}^{1} \chi_{\pm}(\xi, \xi') d\xi' \right)^{1/2}.
\]

The last integral can be written

\[
2^{j''} \int W_{\pm}^{1}(b, \theta', \sigma, \rho) W_{\pm}^{1}(b, \theta' \rho) W_{\pm}^{1} \{ \{2^{k''} m < G_{\pm}^{\mu} \leq (\ell + 1)2^{k''} m \} d\theta',
\]

By Lemma 4.2, (44) can be controlled from above by

\[
C 2^{j''} \frac{2^{k''-j''}}{\rho} = C 2^{j''-d+1+k}.
\]

Plugging into (43), we can get

\[
\|\mathcal{I}_{\pm}'\| \leq C 2^{j'/2} \left(\frac{k'}{\rho} + \frac{k'}{\rho} + \frac{k'}{\rho} \right) \|f\| \|g\| \|b\|_{L^\infty(A^{r}_{J,K,E})}.
\]

Estimate of \(\mathcal{I}_{\pm}'' \)

We decompose \(\mathcal{I}_{\pm}'' = \sum_{\ell} \mathcal{I}_{\pm}''^{\ell} \) and have

\[
|\mathcal{I}_{\pm}''^{\ell}| \leq \phi_{j''}(\xi) \left(\int |\hat{f}(\tau - \tau', \xi - \xi')|^2 |\hat{g}(\tau', \xi')|^2 |b|^2 \chi_{\pm}(\xi, \xi') d\tau' d\xi' \right)^{1/2}.
\]
\[\times 2^{k/2} \left(\int \phi_{
u}^{\prime}(\xi') \mathbb{1}_{W^d_{\pm} \times \mathbb{R}^d_+}(\xi, \xi') \, d\xi' \right)^{1/2}. \]

(45)

If \(\rho < \rho_0 \), by Lemma 4.2 we write the last integral
\[2^{j/d} \int \mathbb{1}_{\mathcal{K}^j_{\pm}}(\theta, \theta', \sigma, \rho) \mathbb{1}_{(tL-T < H_{\pm} < (t+1)L-T)} \, d\theta' \]
where \(L = 2^{k-j''}/\rho m \), \(T = (\pm \sigma + \mu(\alpha^2 + m^2\theta^2))^{\frac{1}{2}} \rho^{-1} m^{-2} \). Since \(\frac{1}{L} \leq |\nabla_{\theta'} H_{\pm}| \leq C \), we can take \(H_{\pm} \) as a local coordinate satisfying universal bounds, and hence we can bound (46) by
\[2^{j/d} 2^{k-j''}/\rho m \leq 2^{j(d-1)+k(1+2^{j''}h)(2^{j''}h)^{-1}}. \]
Plugging into (45), summing in \(\ell \), we get
\[\| T'' \| \leq C 2^{j(d-1)+k/2 + \frac{k}{2}} (1 + h^{2^j} (2^j h)^{-\frac{1}{2}} \| f \| \| g \| \| b \|. \]

\[\square \]

To end this section, let us state a theorem which gathers the results of theorem 3.1 and proposition 4.1.

Theorem 4.4 i) Assume \(j_3 < j_1 \sim j_2 r_1 = r_2 \), and either \((k_3 = k', e_1 \neq e_2)\) or \((k_3 \neq k', e_1 = e_2)\). One has, for a universal constant \(C \),
\[\| \Delta_{jk'}^{e''}r'' (B(\Delta_{jk'}^{e}u, \Delta_{jk'}^{e'}v)) \| \leq C 2^{j(d-1) - \frac{k}{2} + \frac{d}{2}} (1 + 2^j h)(2^j h)^{-\frac{1}{2}} \times \| \Delta_{jk'}^{e}u \| \| \Delta_{jk'}^{e'}v \| \| b \|. \]

(47)

ii) In all the other cases,
\[\| \Delta_{jk'}^{e''}r'' (B(\Delta_{jk'}^{e}u, \Delta_{jk'}^{e'}v)) \| \leq C 2^{j(d-1) - \frac{k}{2} + \frac{d}{2}} (1 + 2^j h)(2^j h)^{-\frac{1}{2}} \times \| \Delta_{jk'}^{e}u \| \| \Delta_{jk'}^{e'}v \| \| b \|. \]

(48)

where \(\tilde{j} = \min(j, j', j'') \), \(j = \max(j, j', j'') \).

5 The proof of the main theorem

In this section, we first show that the nonlinearities involved in the right hand side of (1.2.2) are bounded on \(H_{\nu,r}^d \) for convenient values of \(s, s', N \) and \(r \in \{\mu, 1\} \), then we prove the main result.

Let \(B(u,v) \) be one of the following expressions when \(u \) and \(v \) are functions on \(\mathbb{R}^{d+1} \).
\[h^{-2} uv, \text{ or } h^{-1} u_{\partial_1} v, \text{ or } h^{-1} u_{\partial_2} v, \text{ or } \partial_1 u_{\partial_2} v - \partial_2 u_{\partial_1} v. \]

We have (see [3])

Proposition 5.1 Let \(N \geq (d+3)/2 \), the map \(B(u,v) \) is continuous on \(H^\frac{d+1}{2} \times H^{\frac{d+1}{2}} \)
with values in \(H^\frac{d+1}{2} \) for \(r \in \{\mu, 1\} \).

13
Now we prove that the nonlinearity $u\partial_x v$ in the right hand side of (6) is bounded operator from $H_{N,\mu}^{d+1,\frac{1}{2}} \times H_{N,\mu}^{d+1,\frac{1}{2}}$ to $H_{N-1,\mu}^{d+1,\frac{1}{2}}$ (resp. from $H_{N+1,\mu}^{d+1,\frac{1}{2}} \times H_{N,\mu}^{d+1,\frac{1}{2}}$ to $H_{N-1,\mu}^{d+1,\frac{1}{2}}$). Denote by $b = 1/h^2, \xi'/h$, or τ'/h. It is obvious that
\[
\|b\|_{L^\infty} \leq \frac{1}{h^2} (1 + 2^j h + 2^k h).
\] (49)

Let
\[
B(u, v) = \frac{1}{h^2} uv, \quad \text{or} \quad \frac{1}{h} u\partial_x v, \quad \text{or} \quad \frac{1}{h} u\partial_t v.
\]

Proposition 5.2 Let $N \geq (d+3)/2$. The map $(u, v) \to B(u, v)$ is continuous on $H_{N,\mu}^{d+1,\frac{1}{2}} \times H_{N,\mu}^{d+1,\frac{1}{2}}$ with values in $H_{N-1,\mu}^{d+1,\frac{1}{2}}$.

proof: We shall prove this proposition by writing
\[
\Delta_{j'k'}^{\nu}(B(u, v)) = \sum_{j,j'} \sum_{k,k'} \Delta_{j'k'}^{\nu}(B(\Delta_{jk}^{\nu} u, \Delta_{jk}^{\nu} v)),
\] (50)

a). Estimate of
\[
\sum_{j,j'} \sum_{k,k'} \|\Delta_{j'k'}^{\nu}(B(\Delta_{jk}^{\nu} u, \Delta_{jk}^{\nu} v))\|.
\] (51)

The general term of (51) is bounded from above by
\[
C h^{-2} (1 + 2^j h + 2^k h)(2^j h)^{d+1} (1 + 2^j h + 2^k h)^{d+1/2} \|\Delta_{jk}^{\nu} u\| \|\Delta_{jk}^{\nu} v\|
\]
Using the assumption $(u, v) \in H_{N,\mu}^{d+1,\frac{1}{2}} \times H_{N,\mu}^{d+1,\frac{1}{2}}$, we can bound this expression by
\[
C h^{d+1} (1 + 2^j h + 2^k h)^{d+1/2} (1 + 2^j h + 2^k h)^{d+1/2} (1 + 2^j h + 2^k h)^{d+1/2}
\]
\[
\|\log h\|^{-2\nu}\|u\|_{H_{N,\mu}^{d+1/2,1/2}} \|v\|_{H_{N,\mu}^{d+1/2,1/2}} \sum_{k,k'} |c_{jk}| \Theta^T(J, K, E)
\] (52)
with $\sum_j \sum_{k} |c_{jk}|^2 \leq 1$ and $\sum_j \sum_{k'} |c_{jk'}|^2 \leq 1$, where $\Theta^T(J, K, E)$ is the characteristic function of the set \mathcal{E}^T and
\[
\mathcal{E}^T = \{(J, K, E) \in \mathbb{N}^3 \times \mathbb{N}^3 \times \{+, -\}^3, \exists (\tau, \xi) \in \text{Supp} \Phi_{j'k'}^{\nu}, \exists (\tau', \xi') \in \text{Supp} \Phi_{j'k'}^{\nu}, \tau - \tau' \leq E \}
\] (53)

Let us set
\[
d_{j'k'}^{\nu} = \sum_{j,j'} \sum_{k,k'} 2^{-\nu} h^{d+1/2} 2^{d+1/2} (1 + 2^j h + 2^k h)^{d+1/2} (1 + 2^j h + 2^k h)^{d+1/2} (1 + 2^j h + 2^k h)^{d+1/2}
\]
\[
\times (1 + 2^j h + 2^k h)^{d+1/2} (1 + 2^j h + 2^k h)^{d+1/2} |\log h|^{-\nu} \|u\|_{H_{N,\mu}^{d+1/2,1/2}} \|v\|_{H_{N,\mu}^{d+1/2,1/2}} |c_{jk}| \Theta^T(J, K, E)
\] (54)
then we have

\[
\alpha_j \leq C \sum_{j,j'} 2^{j(\frac{d}{2})} h^{\frac{d}{2} - 1} \log h^{-\nu}(1 + h \inf(2^j, 2^{j'}))^N c_j c_{j'} \Theta^T(J)
\]

for \(\ell^2\) sequences \((c_j)_{j'}, (c'_{j'})_{j'}\), and the result follows from Lemma 3.1.3 in [3], since \(N \geq (d+3)/2\), \(\nu \geq 1\) if \(d \geq 3\) and \(\nu \geq 3/2\) if \(d = 2\).

\(\beta\). Estimate for \(e'' \neq e\) of

\[
\sum_{j,j'} \sum_{k,k' \leq k} \|\Delta_{j,k}^{e''} (B(\Delta_{j,k}^e u, \Delta_{j,k'}^{-1}v))\|.
\]

We bound the general term of (55) by

\[
C h^{d-\frac{d+3}{2}} \frac{2^{j} h}{\nu} (1 + 2^j h)(2^j h)^{-\frac{d}{2} + \frac{3}{2}} (1 + 2^j h + 2^j h)^{-N+1} + 2 \nu \|u\|_{H_N^{\nu+1}}^2 \|v\|_{H_N^{\nu+1}}^2 \sum_{j,j'} c_j c_{j'} \Theta^T(J, K, E)
\]

with \(\sum_j (\sum_k |c_{j,k}|)^2 \leq 1\) and \(\sum_j (\sum_{k'} |c'_{j,k'}|)^2 \leq 1\). Set

\[
d_{j,k} = \sum_{j''} 2^{j(\frac{d}{2})} h^{\frac{d}{2} - 1} (1 + 2^j h)(2^j h)^{-\frac{d}{2} + \frac{3}{2}} (1 + 2^j h + 2^j h)^{-N+1} + 2 \nu \|u\|_{H_N^{\nu+1}}^2 \|v\|_{H_N^{\nu+1}}^2 \sum_{j''} c_{j''} \Theta^T(J, K, E)
\]

Then

\[
d_{j\nu} \leq C \sum_{j,j'} 2^{j(\frac{d}{2})} h^{\frac{d}{2} - 1} \log h^{-\nu}(1 + h \inf(2^j, 2^{j'}))^N c_j c_{j'}
\]

for \(\ell^2\) sequences \((c_j)_{j'}, (c'_{j'})_{j'}\). Now the result follows from Lemma 3.1.3 in [3], since \(N \geq (d+3)/2\), \(\nu \geq 1\) if \(d \geq 3\) and \(\nu \geq 3/2\) if \(d = 2\).

\(\gamma\) Estimate for \(e'' = e\) of

\[
\sum_{j,j'} \sum_{k,k' \leq k} \|\Delta_{j,k}^{e''} (B(\Delta_{j,k}^e u, \Delta_{j,k'}^{-1}v))\|.
\]

We bound the general term of (56) by, using the fact \(j' < j \sim j' \),

\[
C h^{d-\frac{d+3}{2}} \frac{2^{j} h}{\nu} (1 + 2^j h)(2^j h)^{-\frac{d}{2} + \frac{3}{2}} (1 + 2^j h + 2^j h)^{-N+1} \times (1 + 2^j h + 2^j h)^{-N} \|\log h^{-\nu} \|_{H_N^{\nu+1}}^2 \|v\|_{H_N^{\nu+1}}^2 \sum_{j''} c_{j''} \Theta^T(J, K, E)
\]

with \(\sum_j (\sum_k |c_{j,k}|)^2 \leq 1\) and \(\sum_j (\sum_{k'} |c'_{j,k'}|)^2 \leq 1\). Set

\[
d_{j''} \leq \sum_{j,j'} 2^{j(\frac{d}{2})} h^{\frac{d}{2} - 1} (1 + 2^j h)(2^j h)^{-\frac{d}{2} + \frac{3}{2}} (1 + 2^j h + 2^j h)^{-N+1} \times (1 + 2^j h + 2^j h)^{-N} (1 + 2^j h + 2^j h)^{-N-1} \|\log h^{-\nu} \|_{H_N^{\nu+1}}^2 \sum_{j''} c_{j''} \Theta^T(J, K, E)
\]

(57)

We get

\[
d_{j''} \leq C \sum_{j,j'} 2^{j(\frac{d}{2})} h^{\frac{d}{2} - 1} \log h^{-\nu}(1 + h \inf(2^j, 2^{j'}))^N c_j c_{j'}
\]

for \(\ell^2\) sequences \((c_j)_{j'}, (c'_{j'})_{j'}\). Now the result follows from Lemma 3.1.3 in [3] as well. \(\square\) We will use the following proposition which is similar to proposition 3.1.6 in [3]:
Proposition 5.3 Let $N \geq (d+3)/2$. The map $(u, v) \mapsto u \cdot v$ is continuous on $H^{d+1, \frac{1}{2}}_{\mu, r} \times H^{d+1, \frac{1}{2}}_{\mu, r}$ with values in $H^{\frac{d+1}{2}}_{N-1, r}$, $r \in \{\mu, 1\}$.

The following proposition may be found in [2] proposition 3.2.2:

Proposition 5.4 Let $s \in \mathbb{R}$, $N \in \mathbb{N}$, $N \geq (d+3)/2$, and $t_{\mu} \in \{\mu, 1\}$,

$$(u_{0})_{h} \in H^{s}_{N} (\mathbb{R}^{d}), (u^{h})_{h} \in H^{s-1}_{N-1} (\mathbb{R}^{d}), (f^{h})_{h} \in H^{s-1, 1/2}_{N-1, t_{\mu}} (\mathbb{R}^{d+1}).$$

Let $(u^{h})_{h}$ be the solution of

$$
\begin{cases}
\Box_{t} u^{h} + h^{-2} (t_{\mu})^{2} u^{h} = f^{h}, \\
|u^{h}|_{t=0} = u_{0}^{h}, \quad \partial_{t} u^{h}|_{t=0} = u_{1}^{h},
\end{cases}
$$

(58)

Then for any $\chi \in C_{0}^{\infty} (\mathbb{R})$, $(\chi (t) u^{h})_{h}$ is in $H^{s, 1/2}_{N, t_{\mu}}$ and the map

$$
((u_{0})_{h}, (u^{h})_{h}, (f^{h})_{h}) \mapsto (\chi (t) u^{h})_{h}
$$
is continuous on the preceding spaces.

Proof of theorem 2.2: Take $\chi \in C_{0}^{\infty} (\mathbb{R})$, $\chi \equiv 1$ on a neighborhood of $[-1, 1]$. Let $U^{0} = (U^{0}, V^{0})$ be the solution of $\Box_{t} U^{0} + h^{-2} \mu^{2} U^{0} = 0, \Box V^{0} + h^{-2} V^{0} = 0, U^{0}|_{t=0} = V^{0}, \partial_{t} U^{0}|_{t=0} = W^{0}$, and for $n \geq 0$ define $U^{n+1} = (U^{n+1}, V^{n+1})$ by

$$
\Box_{t} U^{n+1} + h^{-2} \mu^{2} U^{n+1} = h^{-2} F_{1} (\chi (t) U^{n}, h \partial_{t} (\chi (t) U^{n}), h \partial_{x} (\chi (t) U^{n})),
$$

$$
\Box V^{n+1} + h^{-2} V^{n+1} = h^{-2} F_{2} (\chi (t) U^{n}, h \partial_{t} (\chi (t) U^{n}), h \partial_{x} (\chi (t) U^{n})),
$$

$$
U^{n+1}|_{t=0} = V^{h}, \quad \partial_{t} U^{n+1}|_{t=0} = W^{h}.
$$

The assumption (3) on F, together with propositions 5.1, 5.2 and 5.3, implies that if $\chi (t) U^{n}$ is in $H^{(d+1)/2, 1/2}_{N, \mu}$, $\chi (t) V^{n}$ is in $H^{(d+1)/2, 1/2}_{N, 1}$, the right hand side of the first equation (50) in $H^{(d-1)/2, 1/2}_{N-1, \mu}$ and the second is in $H^{(d-1)/2, 1/2}_{N-1, 1}$. Proposition 5.4 shows that $\chi (t) U^{n+1}$ is then in $H^{(d+1)/2, 1/2}_{N, \mu}$ and $\chi (t) V^{n+1}$ is then in $H^{(d+1)/2, 1/2}_{N, 1}$. If $(V^{h})_{h}$ and $(W^{h})_{h}$ are small enough, one deduces from that the boundedness and convergence of sequence $(\chi (t) U^{n})_{h}$. The limit provides the solution we are seeking for on $[-1, 1]$. Since $\chi (t) U \in H^{(d+1)/2, 1/2}_{N, \mu}$ implies $U \in C^{0} [1, 1], H^{(d+1)/2}_{N, \mu}$ and $\partial_{t} U \in C^{0} [-1, 1], H^{(d-1)/2}_{N-1, \mu}$, and from $\chi (t) V \in H^{(d+1)/2, 1/2}_{N, 1}$ implies $V \in C^{0} [1, 1], H^{(d+1)/2}_{N, 1}$ and $\partial_{t} V \in C^{0} [-1, 1], H^{(d-1)/2}_{N-1, 1}$, we get the properties of the statement of the theorem. \qed

Bibliography

