Ambiguous loci of mutually nearest and mutually furthest points in Banach spaces

Chong Lia, Hong-Kun Xub,\ast

aDepartment of Mathematics, Zhejiang University, Hangzhou 310027, People’s Republic of China
bSchool of Mathematical Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

Received 7 August 2003; accepted 12 April 2004

Abstract

Let \(X\) be a real separable strictly convex Banach space and \(G\) a nonempty closed subset of \(X\). Let \(\mathcal{K}(X)\) (resp. \(\mathcal{K}^b(X)\)) denote the family of all nonempty boundedly compact (resp. compact) convex subsets of \(X\) endowed with the \(H\)-topology (resp. the Hausdorff distance), \(\mathcal{K}_G(X)\) (resp. \(\mathcal{K}_G^b(X)\)) the closure of the set \(\{A \in \mathcal{K}(X) : A \cap G = \emptyset\}\) (resp. \(\{A \in \mathcal{K}^b(X) : A \cap G = \emptyset\}\)), and \(\mathcal{V}(G)\) (resp. \(\mathcal{V}_G^b(G)\)) the family of \(A \in \mathcal{K}_G(X)\) (resp. \(A \in \mathcal{K}_G^b(X)\)) such that the minimization problem \(\min(A, G)\) fails to be well-posed. It is proved that for most (in the sense of the Baire category) closed subsets (resp. bounded closed subsets) \(G\) of \(X\), \(\mathcal{V}(G)\) (resp. \(\mathcal{V}_G^b(G)\)) is everywhere uncountable in \(\mathcal{K}_G(X)\) (resp. \(\mathcal{K}_G^b(X)\)). A similar result for the mutually furthest point problem is also given.

MSC: primary 41A65; 54E52; secondary 46B20

Keywords: Minimization problem; Maximization problem; Well-posed; Ambiguous loci

1. Introduction

Let \(X\) be a real Banach space. We shall use the following notations for various families of subsets of \(X\).

\(\mathcal{K}(X)\)—the family of all nonempty closed subsets,

\(\mathcal{K}^b(X)\)—the family of all nonempty closed bounded subsets,

\(\mathcal{V}(G)\) (resp. \(\mathcal{V}_G^b(G)\)) is everywhere uncountable in \(\mathcal{K}_G(X)\) (resp. \(\mathcal{K}_G^b(X)\)). A similar result for the mutually furthest point problem is also given.

\(\ast\) Supported in part by the National Natural Science Foundations of China (Grant Nos. 10271025).

\ast Corresponding author. Fax: +27-31-204-4806.

E-mail addresses: cli@zju.edu.cn (C. Li), xuhk@ukzn.ac.za (H.-K. Xu).
\(\mathcal{C}(X)\)—the family of all nonempty closed convex subsets,
\(\mathcal{C}^b(X)\)—the family of all nonempty closed bounded convex subsets,
\(\mathcal{K}(X)\)—the family of all nonempty convex boundedly compact subsets,
\(\mathcal{K}^b(X)\)—the family of all nonempty convex compact subsets.

Let \(G, A \in \mathcal{A}(X)\). Define
\[
\lambda_{AG} := \inf \{ \|z - x\| : x \in A, z \in G \}
\]
and, if \(G\) and \(A\) are additionally bounded
\[
\mu_{AG} := \sup \{ \|z - x\| : x \in A, z \in G \}.
\]

Given a nonempty closed (resp. closed bounded) subset \(G\) of \(X\), according to [8], for \(A \in \mathcal{A}(X)\) (resp. \(A \in \mathcal{A}^b(X)\)), a pair of \((x_0, z_0)\) with \(x_0 \in A, z_0 \in G\) is called a solution of the minimization (resp. maximization) problem, denoted by \(\min(A, G)\) (resp. \(\max(A, G)\)), if \(\|x_0 - z_0\| = \lambda_{AG}\) (resp. \(\|x_0 - z_0\| = \mu_{AG}\)). Moreover, any sequence \(\{(x_n, z_n)\}\) with \(x_n \in A, z_n \in G\), such that \(\lim_{n\to\infty} \|x_n - z_n\| = \lambda_{AG}\) (resp. \(\lim_{n\to\infty} \|x_n - z_n\| = \mu_{AG}\)) is called a minimizing (resp. maximizing) sequence for \(\min(A, G)\) (resp. \(\max(A, G)\)). A minimization (resp. maximization) problem is said to be well-posed if it has a unique solution and every minimizing (resp. maximizing) sequence converges strongly to the solution.

Recall that the Hausdorff distance on the space \(\mathcal{A}^b(X)\) is defined by
\[
H(A, B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} \|a - b\|, \sup_{b \in B} \inf_{a \in A} \|a - b\| \right\}, \quad A, B \in \mathcal{A}^b(X).
\]

It is known that \((\mathcal{A}^b(X), H)\) is a complete metric space.

De Blasi et al. [8] considered the well-posedness of the minimization and maximization problems. They proved that if \(X\) is a uniformly convex Banach space, then the set of \(A \in \mathcal{C}^b(X)\) (resp. \(A \in \mathcal{C}^b(X)\)) such that the minimization problem \(\min(A, G)\) (resp. maximization problem \(\max(A, G)\)) is well-posed, is a dense \(G/SO\)-subset of \(\mathcal{C}^b(X)\) (resp. \(\mathcal{C}^b(X)\)), where \(\mathcal{C}^b(X)\) stands for the closure of the set \(\{A \in \mathcal{C}^b(X) : \lambda_{AG} > 0\}\). Recently, the first author of the present paper extended the above result to the framework of reflexive locally uniformly convex Banach spaces for the class \(\mathcal{K}(X)\) in [13]. These are positive results on the well-posedness. For some motivating ideas and related works see also [1,2,6,7,9–12,14,15].

In the present paper, in spirit of some works on the nearest point and furthest problems from [3–5,16], we will establish some negative results on the well-posedness. More precisely, let \(\mathcal{V}(G)\) (resp. \(\mathcal{M}(G)\)) denote the set of all \(A \in \mathcal{K}^b_G(X)\) (resp. \(A \in \mathcal{K}^b(X)\)) such that the minimization problem \(\min(A, G)\) (resp. maximization problem \(\max(A, G)\)) fails to be well-posed, that is,
\[
\mathcal{V}(G) = \{A \in \mathcal{K}^b_G(X) : \min(A, G)\text{ is not well-posed}\},
\]
where \(\mathcal{K}^b_G(X) = \{A \in \mathcal{K}(X) : \lambda_{AG} > 0\}\) and
\[
\mathcal{M}(G) = \{A \in \mathcal{K}^b(X) : \max(A, G)\text{ is not well-posed}\}.
\]
We shall prove that if X is a strictly convex and separable Banach space, then the family of nonempty closed subsets (resp. bounded closed subsets) $G \in \mathcal{F}(X)$ such that $\mathcal{V}(G)$ (resp. $\mathcal{M}(G)$) is everywhere uncountable in $\mathcal{K}_G(X)$ (resp. $\mathcal{K}_b(X)$) is residual in $\mathcal{A}(X)$ (resp. $\mathcal{A}_b(X)$), where $\mathcal{A}(X)$ is endowed with the H-topology while $\mathcal{A}_b(X)$ with the Hausdorff metric. Our results generalize some results on the nearest and furthest point problems from [4,5,16]. Moreover, it should be remarked that all known results on ambiguous loci in best approximation theory were established for some families of bounded subsets of X. Our results mutually nearest point problems obtained in the present paper are for some families of unbounded subsets of X.

We conclude this section with some notation. If X is a Banach space and if $A \subset X$, then \overline{A} stands for the closure of A, diam(A) for the diameter of A, and $\overline{c}A$ for the closed convex hull of A. We use $B(x, r)$ to denote the closed ball with centre x and radius r in X, in particular, B stands for $B(0, 1)$. We also need the following definition of everywhere uncountability in a topological space, see [3–5] for the definition in a metric space.

Definition 1.1. Let S be a subset of the topological space E. S is called **everywhere uncountable in E** if, for every $x \in E$ and its neighbourhood $U(x)$, the set of the intersection, $S \cap U(x)$, is nonempty and uncountable.

Note that if A is everywhere uncountable, then it is dense in E; the converse is however not true, in general.

2. Ambiguous loci of mutually nearest points

We begin with the following definition. Recall that the Hausdorff metric can also be redefined by

$$H(A, B) = \max\{e(A, B), e(B, A)\}, \quad A, B \in \mathcal{A}_b(X), \quad (2.1)$$

where $e(A, B)$ is defined by

$$e(A, B) = \inf\{\varepsilon > 0 : B \subseteq A + \varepsilon B\}. \quad (2.2)$$

Furthermore, for any $\rho > 0$, $A, B \in \mathcal{A}(X)$, define

$$H_\rho(A, B) = \max\{e(A, B \cap \rho B), e(B, A \cap \rho B)\}. \quad (2.3)$$

Then it is easy to see that, for any $\rho > 0$ and $A, B \in \mathcal{A}(X)$,

$$H_\rho(A, B) \leq H(A, B) \quad (2.4)$$

if $H(A, B)$ is allowed to be $+\infty$.

Definition 2.1. The H_ρ-topology on $\mathcal{A}(X)$ is defined as follows: for any $A \in \mathcal{A}(X)$, the neighbourhood basis of A is the family of all subsets $U_\gamma(A, r)$ with $\gamma > 0$ and $r > 0$ defined by

$$U_\gamma(A, r) = \{B \in \mathcal{A}(X) : H_\gamma(A, B) < r\}. \quad (2.5)$$
Throughout the whole paper, we always endow $\mathcal{A}(X)$ and $\mathcal{A}^b(X)$ with the H_p-topology and Hausdorff metric, respectively. Thus, $\mathcal{H}(X)$ is a topological subspace of $\mathcal{A}(X)$ while $\mathcal{H}^b(X)$ is a metric subspace of $\mathcal{A}^b(X)$. For $F, G \in \mathcal{A}(X)$, let
\[
\mathcal{A}_F(X) := \{G \in \mathcal{A}(X) : \lambda_{FG} > 0\},
\] (2.6)
where the closure is taken in the topological space $\mathcal{A}(X)$. Recall that the set $\mathcal{U}(G)$ is defined by
\[
\mathcal{U}(G) = \{A \in \mathcal{H}(X) : \min(A, G) \text{ is not well-posed}\},
\]
where $\mathcal{H}(X) = \mathcal{H}(X) \cap \mathcal{A}(X) = \{A \in \mathcal{H}(X) : \lambda_{AG} > 0\}$.

Theorem 2.1. Suppose that X is a separable strictly convex Banach space. Then the set
\[
\mathcal{A}^\gamma(X) := \{G \in \mathcal{A}(X) : \mathcal{U}(G) \text{ is everywhere uncountable in } \mathcal{H}(X)\}
\]
is residual in $\mathcal{A}(X)$.

Proof. For $r > 0$, $\gamma > 0$ and $F \in \mathcal{H}(X)$, define
\[
\mathcal{A}_{r,\gamma, F}(X) := \{G \in \mathcal{A}_F(X) : \mathcal{U}(G) \cap U_\gamma(F, r) \text{ is countable in } \mathcal{H}(X)\},
\] (2.7)
where $U_\gamma(F, r)$ is defined by $U_\gamma(F, r) = \{B \in \mathcal{A}(X) : H_\gamma(F, B) < r\}$. We will prove that $\mathcal{A}_{r,\gamma, F}$ is nowhere dense in $\mathcal{A}(X)$. For the purpose, let $G \in \mathcal{A}_{r,\gamma, F}$. Since X is strictly convex and F is boundedly compact, without loss of generality, we may assume that $\min(F, G)$ has a unique solution (f_F, g_F). We may also assume $\lambda_{FG} = 0$. If, otherwise, $\lambda_{FG} > 0$, we can take \tilde{G} which is near G, such that $\min(F, \tilde{G})$ has a unique solution and $\lambda_{F,\tilde{G}} > 0$. It is sufficient to show that, for any $\rho > 0$, $\epsilon > 0$, there exist $Y \in U_\rho(G, \epsilon) \cap \mathcal{A}_{r,\gamma, F}$ and $\rho' > 0$, $\epsilon' > 0$ such that $U_{\rho'}(Y, \epsilon') \cap \mathcal{A}_{r,\gamma, F} = \emptyset$.

Without loss of generality, let $\rho > 0$ and let ϵ satisfy that $0 < \epsilon < \min\{\rho, \lambda_{FG}\}$. Let
\[
g_1 = f_F + \left(1 - \frac{\epsilon}{2\lambda_{FG}}\right)(g_F - f_F).
\] (2.8)
It is immediately clear that
\[
d(g_1, F) = \|f_F - g_1\| = \lambda_{FG} - \epsilon/2 > \epsilon/2
\] (2.9)
and
\[
d(g_1, G) = \|g_F - g_1\| = \epsilon/2.
\] (2.10)
Let next $g_2 \in X$ be such that
\[
\|g_1 - g_2\| = \epsilon/2 \quad \text{and} \quad d(g_2, F) = d(g_1, F),
\] (2.11)
where $d(g_1, F)$ denote the distance from g_1 to F. Note that g_1, g_2, g_F are not colinear and X is strictly convex. Then, by (2.10) and (2.11),
\[
d(g_2, G) \leq \|g_2 - g_F\| < \|g_2 - g_1\| + \|g_1 - g_F\| = \epsilon.
\] (2.12)
Put
\[
Y := G \cup \{g_1, g_2\}.
\]
We now estimate by (2.10) and (2.12)

\[H(G, Y) = \max \left\{ \sup_{g \in G} d(g, Y), \sup_{y \in Y} d(y, G) \right\} \]

\[= \sup_{y \in Y} d(y, G) \]

\[= \max \{ d(g_1, G), d(g_2, G) \} < \varepsilon. \]

This with (2.4) implies that \(Y \in U_\rho(G, \varepsilon). \)

Let now \(f_1 := f_\rho \) and \(f_2 \in F \) be the unique best approximation to \(g_2 \) from \(F \). Set

\[\tau := \frac{\varepsilon}{8d(g_1, F)}, \quad (2.13) \]

\[u_\delta^i := (1 - \delta)f_i + \delta g_i, \quad 0 \leq \delta \leq 1, \quad i = 1, 2 \quad (2.14) \]

and

\[h := \frac{1}{2} \min_{\delta \in [\tau/2, \tau]} \min \{ d(g_1, F_2^\delta) - d(g_2, F_2^\delta), d(g_2, F_1^\delta) - d(g_1, F_1^\delta) \}, \quad (2.15) \]

where

\[F_1^\delta := \text{co}(F \cup \{ u_\delta^i \}), \quad i = 1, 2. \quad (2.16) \]

Then \(F_1^\delta \) is boundedly compact. We now show that \(h > 0 \). Assume the contrary that \(h \leq 0 \). With no loss of generality, we may assume that

\[d(g_1, F_2^\delta) \leq d(g_2, F_2^\delta). \quad (2.17) \]

Let \(\bar{f} \) be the unique point in \(F_2^\delta \) such that \(\|g_1 - \bar{f}\| = d(g_1, F_2^\delta) \). Write \(\bar{f} = (1 - \bar{\tau})f + \bar{\tau}u_2^\delta \) for some \(\bar{\tau} \in [0, 1] \) and \(f \in F \) to get

\[d(\bar{f}, F) \leq \|\bar{f} - (1 - \bar{\tau})f - \bar{\tau}f_2\| = \bar{\tau}\|u_2^\delta - f_2\| = \bar{\tau}\|u_2^\delta - f_2\| = \bar{\tau}d(g_2, F) \]

\[\leq \bar{\tau}d(u_2^\delta, F). \quad (2.18) \]

It turns out, by (2.17) and (2.11), that

\[d(g_1, F) \leq \|g_1 - \bar{f}\| + d(\bar{f}, F) \]

\[= d(g_1, F_2^\delta) + d(\bar{f}, F) \]

\[\leq d(g_2, F_2^\delta) + d(\bar{f}, F) \]

\[\leq \|g_2 - u_2^\delta\| + \bar{\tau}d(u_2^\delta, F) \]

\[\leq \|g_2 - u_2^\delta\| + d(u_2^\delta, F) \]

\[= d(g_2, F) = d(g_1, F). \]

So we must have \(\bar{\tau} = 1 \) and \(\bar{f} = u_2^\delta \), resulting by (2.17) again in that

\[\|g_1 - u_2^\delta\| = d(g_1, F_2^\delta) \leq \|g_2 - u_2^\delta\|. \quad (2.19) \]
Noting by (2.11)
\[\|g_1 - f_2\| \geq d(g_1, F) = d(g_2, F) = \|g_2 - f_2\| \] (2.20)
we obtain by (2.19) that
\[
\|g_1 - f_2\| = \|g_1 - u^g_2 + u^g_2 - f_2\| \\
\leq \|g_1 - u^g_2\| + \|u^g_2 - f_2\| \\
\leq \|g_2 - u^g_2\| + \|u^g_2 - f_2\| \\
= \|g_2 - f_2\| \\
\leq \|g_1 - f_2\|.
\] (2.21)
Hence we have
\[
\|g_1 - u^g_2 + u^g_2 - f_2\| = \|g_1 - u^g_2\| + \|u^g_2 - f_2\|
\]
and, since \(X\) is strictly convex
\[
g_1 - u^g_2 = \lambda (u^g_2 - f_2)
\] (2.22)
for some \(\lambda > 0\). This contradicts the fact that \(g_1, f_2, u^g_2\) are not colinear.

Now let
\[
\varepsilon' := \min \left\{ \frac{\varepsilon}{8}, h \right\} \quad \text{and} \quad \rho' = 2 \left(\max_{f \in F} \|f\| + \max_{i=1,2} \left(\|f_i\| + \|g_i\| \right) + 1 \right).
\] (2.23)
For any \(Z \in U_{\rho'}(Y, \varepsilon')\), we get
\[
d(g_i, Z) < H_{\rho'}(Y, Z) < \varepsilon', \quad i = 1, 2
\] (2.24)
as \(g_i \in Y \cap \rho' \mathcal{B}\). Set
\[
Z_i := \mathcal{B}(g_i, \varepsilon') \cap Z, \quad i = 1, 2.
\] (2.25)
Then, by (2.24) and (2.25), \(Z_i \neq \emptyset\) for \(i = 1, 2\) and by (2.11) and (2.23), \(Z_1 \cap Z_2 = \emptyset\). Let
\[
A^g_i := \text{co}(F \cup \{(1 - t)u^g_1 + tu^g_2\}), \quad 0 \leq t \leq 1, \quad \tau/2 \leq \delta \leq \tau.
\] (2.26)
Then, for each \(0 \leq t \leq 1, \quad \tau/2 \leq \delta \leq \tau, \quad A^g_i\) is boundedly compact. We next show that
\[
\lambda_{A^g_{i|Z}} = \lambda_{A^g_{i|Z_1 \cup Z_2}}, \quad 0 \leq t \leq 1 \text{ and } \tau/2 \leq \delta \leq \tau.
\] (2.27)
Indeed, for each \(a := (1 - s)f + s[(1 - t)u^g_1 + tu^g_2] \in A^g_{i|Z}\), where \(0 \leq s \leq 1, \quad 0 \leq t \leq 1, \quad \tau/2 \leq \delta \leq \tau, \quad f \in F\), we have
\[
d(a, F) \leq \|a - (1 - s)f - s[(1 - t)f_1 + tf_2]\| \leq \max \{\|f_1 - u^g_1\|, \|f_2 - u^g_2\|\}
\]
\[
\leq \delta d(g_1, F).
\] (2.28)
Similarly, for \(i = 1, 2\) and each \(b := (1 - s)f + su^g_i \in F^g_{i|Z}\),
\[
d(b, F) \leq \|b - [(1 - s)f + sf_i]\| = s\|f_i - u^g_i\| = sd(u^g_i, F) \leq \delta d(g_i, F).
\] (2.29)
It follows from the inclusions $F \subseteq A_i^\delta$, $F_i^\delta \subseteq F_i^\delta$ and (2.27), (2.28) that, for $i = 1, 2$

$$H(A_i^\delta, F_i^\delta) = \max \left\{ \sup_{a \in A_i^\delta} d(a, F_i^\delta), \sup_{b \in F_i^\delta} d(b, A_i^\delta) \right\}$$

$$\leq \max \left\{ \sup_{a \in A_i^\delta} d(a, F), \sup_{b \in F_i^\delta} d(b, F) \right\}$$

$$\leq \delta \cdot \max \{d(g_1, F), d(g_2, F)\}$$

$$= \delta d(g_1, F). \quad (2.30)$$

For $i = 1, 2$, by the definition of F_i^δ, we obtain that

$$d(g_i, F_i^\delta) = \|g_i - u_i^\delta\| = (1 - \delta) d(g_i, F). \quad (2.31)$$

Hence, from (2.24), (2.30) and (2.31), we have that, for $i = 1, 2$

$$\lambda_{A_i^\delta Z_i} \leq d(g_i, A_i^\delta) + d(g_i, Z_i)$$

$$\leq H(A_i^\delta, F_i^\delta) + d(g_i, F_i^\delta) + \epsilon'$$

$$\leq \delta d(g_1, F) + (1 - \delta) d(g_i, F) + \epsilon'$$

$$= \lambda_{FG} - \epsilon/2 + \epsilon', \quad (2.32)$$

where the last equality is because of (2.9) and (2.11).

Now, let $z \in Z$. Suppose that, for some $i = 1, 2$

$$d(z, A_i^\delta) \leq \lambda_{A_i^\delta Z_i}. \quad (2.33)$$

Observe that

$$\max_{a \in A_i^\delta} \|a\| \leq \max_{a \in F} \|a\|, \max_{i=1,2} (\|f_i\| + \|g_i\|) \quad (2.34)$$

and

$$\lambda_{A_i^\delta Z_i} \leq \lambda_{FZ_i} \leq \max_{a \in F} \|a - g_i\| + d(g_i, Z_i) \leq \max_{a \in F} \|a\| + \|g_i\| + 1. \quad (2.35)$$

It follows from (2.33) to (2.35) and (2.23) that

$$\|z\| \leq d(z, A_i^\delta) + \max_{a \in A_i^\delta} \|a\|$$

$$\leq \max_{a \in F} \|a\| + 1 + \max_{a \in F} \|a\|, \max_{i=1,2} (\|f_i\| + \|g_i\|) \quad$$

$$\leq 2 \left(\max_{a \in F} \|a\| + \max_{i=1,2} (\|f_i\| + \|g_i\|) \right) + 1$$

$$< \rho'.$$

Furthermore, since $\delta \leq \tau$, by (2.4), (2.28) and (2.13),

$$H_j(A_i^\delta, F) \leq H(A_i^\delta, F) \leq \sup \{d(a, F) : a \in A_i^\delta\} \leq \delta d(g_1, F) < \epsilon/8. \quad (2.36)$$
Consequently,
\[\lambda_{G A_t^o} \geq \lambda_{F G} - H(A_t^o, F) \geq \lambda_{F G} - \varepsilon/8. \]
(2.37)

Since \(H_{r'}(Y, Z) < \varepsilon' \) and \(\|z\| < \rho' \), there exists \(y \in Y \) such that \(\|z - y\| < \varepsilon' \) so that \(y \neq g_i \) and \(y \in G \). Thus, if \(\|z - g_i\| > \rho \), we have, by (2.37) and (2.32)
\[d(z, A_t^o) \geq d(y, A_t^o) - \varepsilon' \geq \lambda_{G A_t^o} - \varepsilon' \geq \lambda_{G F} - \varepsilon/8 - \varepsilon' > \lambda_{G F} - \varepsilon/2 + \varepsilon' \geq \lambda_{A_t^o Z_i} \]
which contracts (2.33). This implies that \(z \in Z_i \), and hence (2.27) holds.

On the other hand, we have by definition of \(\varepsilon' \)
\[\lambda_{F_t^1 Z_1} \leq d(g_1, F_1^o) + \varepsilon' \]
\[\leq d(g_1, F_1^o) + \frac{1}{2} [d(g_2, F_1^o) - d(g_1, F_1^o)] \]
\[= d(g_2, F_1^o) + \frac{1}{2} [d(g_1, F_1^o) - d(g_2, F_1^o)] \]
\[\leq \lambda_{F_t^1 Z_2} + \varepsilon' + \frac{1}{2} [d(g_1, F_1^o) - d(g_2, F_1^o)] \]
\[\leq \lambda_{F_t^1 Z_2}. \]
(2.38)

Similarly we have
\[\lambda_{F_t^2 Z_2} \leq \lambda_{F_t^2 Z_1}. \]
(2.39)

For arbitrary fixed \(\delta \in [\tau/2, \tau] \), let
\[r(t) := \lambda_{Z_t A_t^o} - \lambda_{Z_t A_t^o}, \quad 0 \leq t \leq 1. \]

Then, by (2.38) and (2.39)
\[r(0) = \lambda_{F_t^1 Z_1} - \lambda_{F_t^1 Z_2} \leq 0, \]
\[r(1) = \lambda_{F_t^2 Z_1} - \lambda_{F_t^2 Z_2} \geq 0. \]

It follows from the continuity of \(r(\cdot) \) that there exists \(0 \leq t_0 \leq 1 \) such that \(r(t_0) = 0 \); hence
\[\lambda_{Z_t A_t^o} = \lambda_{Z_t A_t^o} \]
(2.40)

for each \(\delta \in [\tau/2, \tau] \). Since \(Z_1 \) and \(Z_2 \) are closed and disjoint, it follows that the problem \(\min(A_t^o, Z) \) is not well-posed for each \(\delta \in [\tau/2, \tau] \). This means that \(A_t^o \in \mathcal{V}(Z) \) for each \(\delta \in [\tau/2, \tau] \). In addition, by (2.36) and (2.37), \(A_t^o \in U_{r}(F, r) \cap \mathcal{K}_G(X) \). This implies that \(\mathcal{V}(Z) \cap U_{r}(F, r) \) contains at least uncountable elements and consequently, \(Z \notin \mathcal{A}_{F, r, r} \). Therefore, \(\mathcal{A}_{F, r, r} \) is nowhere dense in \(\mathcal{A} \) as \(Z \in U_{r'}(Y, \varepsilon') \) is arbitrary.

Since the separability of \(X \) implies that \(\mathcal{K}(X) \) is separable, there exists a countable subset \(\mathcal{S} \) of \(\mathcal{K}(X) \) which is dense in \(\mathcal{K}(X) \). Let \(Q_+ \) be the set of positive rationals. Define
\[\mathcal{A} := \bigcup_{F \in \mathcal{S}} \bigcup_{r, r' \in Q_+} \mathcal{A}_{F, r, r}. \]
Then \tilde{A} is of the first Baire category in $\mathcal{A}(X)$. To complete the proof it remains to prove that $\mathcal{A}(X) \subseteq \mathcal{A}(X) \setminus \tilde{A}$. To this end, let $G \in \mathcal{A}(X) \setminus \tilde{A}$. For any $r > 0$, $\gamma > 0$ and any $F \in \mathcal{K}_G(X)$, there exist $\tilde{r}, \tilde{\gamma} \in Q_+$ and $\tilde{F} \in \mathcal{F}$ such that $\tilde{F} \in \mathcal{K}_G(X)$ and $U_{\tilde{r}}(\tilde{F}, \tilde{\gamma}) \subseteq U_{\gamma}(F, r)$. Note that $G \in \mathcal{A}(X) \setminus \mathcal{A}_F(\tilde{r}, \tilde{\gamma})$. Since $\tilde{F} \cap G = \emptyset$, it follows that $\forall (G) \cap U_{\tilde{r}}(\tilde{F}, \tilde{\gamma})$ is nonempty and uncountable and so is $\forall (G) \cap U_{\gamma}(F, r)$. This shows that $\forall (G)$ is everywhere uncountable in $\mathcal{K}_G(X)$ and the proof is complete.

Similarly, modifying slightly the proof of Theorem 2.1, we also have following theorems. Let $\mathcal{K}_b G(X)$ denote the intersection set of $\mathcal{K}_b(X)$ and $\mathcal{C}_G(X)$.

Theorem 2.2. Suppose that X is a separable strictly convex Banach space. Then the set $\mathcal{A}_b^*(X) := \{ G \in \mathcal{A}_b(X) : \forall (G) \text{ is everywhere uncountable in } \mathcal{K}_b G(X) \}$ is residual in $\mathcal{A}_b(X)$.

Theorem 2.3. Suppose that X is a separable strictly convex Banach space. Then the set $\mathcal{A}^*(X) := \{ G \in \mathcal{A}_b(X) : \forall (G) \text{ is everywhere uncountable in } \mathcal{K}_G(X) \}$ is residual in $\mathcal{A}_b(X)$.

3. Ambiguous loci of mutually furthest points

We study in this section the ambiguous loci of mutually furthest points. For $x \in X$ and $F \in \mathcal{A}_b(X)$, write $e(x, F) = \sup_{f \in F} \| x - f \|$. Recall that the set $\mathcal{M}(G)$ is defined by $\mathcal{M}(G) = \{ A \in \mathcal{K}_b(X) : \text{max}(A, G) \text{ is not well-posed} \}$.

Theorem 3.1. Assume that X is a separable strictly convex Banach space. Then the set $\mathcal{A}_b^v(X) := \{ G \in \mathcal{A}_b(X) : \mathcal{M}(G) \text{ is everywhere uncountable in } \mathcal{K}_b(X) \}$ is residual in $\mathcal{A}_b(X)$.

Proof. Since the proof is similar to that of Theorem 2.1, we only sketch it here. For $F \in \mathcal{K}_b(X)$ and $r > 0$, define $\mathcal{A}_{F,r} := \{ G \in \mathcal{A}_b(X) : \mathcal{M}(G) \cap U(F, r) \text{ is countable in } \mathcal{K}_b(X) \}$, where $U(F, r) = \{ B \in \mathcal{A}_b(X) : h(F, B) < r \}$. We will show that $\mathcal{A}_{F,r}$ is nowhere dense in $\mathcal{A}_b(X)$. In fact, let $G \in \mathcal{A}_{F,r}$. We may assume $\mu_{FG} > 0$ and $\max(F, G)$ has a unique solution (f_F, g_F). Let $0 < \varepsilon < \min \{ r, \mu_{FG} \}$ and $g_1 := f_F + \left(1 + \frac{\varepsilon}{2\mu_{FG}} \right) (g_F - f_F)$.

It is clear that \(e(g_1, F) = \| f_F - g_1 \| = \mu_{FG} + \varepsilon/2 \). Let \(g_2 \in X \) be such that
\[
\| g_1 - g_2 \| = \varepsilon/2 \quad \text{and} \quad e(g_2, F) = e(g_1, F)
\]
and put
\[
Y := G \cup \{ g_1, g_2 \}.
\]
Then we have that \(H(G, Y) \leq \varepsilon \) since \(\| g_i - g_F \| \leq \varepsilon \) for \(i = 1, 2 \). Let \(f_1 := f_F \) and \(f_2 \in F \) be such that \(\| f_2 - g_2 \| = e(g_2, F) \). Set
\[
\tau := \frac{\varepsilon}{8e(g_1, F)},
\]
\[
u_i^\delta := (1 + \delta)f_i - \delta g_i, \quad 0 \leq \delta \leq 1, \quad i = 1, 2
\]
and
\[
h := \frac{1}{2} \min_{\delta \in [\tau/2, \tau]} \min \{ e(g_2, F_2^\delta) - e(g_1, F_1^\delta), e(g_1, F_1) - e(g_2, F_2^\delta) \},
\]
where
\[
F_i^\delta = \text{co}(F \cup \{ u_i^\delta \}), \quad i = 1, 2.
\]
Then \(h > 0 \). Now let
\[
\rho := \min \left\{ \frac{\varepsilon}{8}, h \right\}
\]
and for \(Z \in U(Y, \rho) \), set
\[
Z_i := B(g_i, \rho) \cap Z, \quad i = 1, 2.
\]
Then \(Z_i \neq \emptyset \) for \(i = 1, 2 \) and \(Z_1 \cap Z_2 = \emptyset \). Let
\[
A_i^\delta := \text{co}(F \cup \{(1 - t)u_i^\delta + tu_i^\delta \}), \quad 0 \leq t \leq 1, \quad \tau/2 \leq \delta \leq \tau.
\]
Then we have that for each \(\delta \in [\tau/2, \tau] \) there exists \(0 \leq t_\delta \leq 1 \) such that the problem
\[
\max(A_i^\delta, Z) \text{ is not well-posed}. \quad (3.1)
\]
This implies that \(Z \notin \mathcal{A}_{F, r} \) and \(\mathcal{A}_{F, r} \) is nowhere dense in \(\mathcal{A}^b(X) \) since \(Z \in U(Y, \rho) \) is arbitrary.

Now let \(\mathcal{S} \) be a countable dense subset for \(\mathcal{A}^b(X) \) and let \(Q_+ \) be the set of positive rationals. Define
\[
\mathcal{J} := \bigcup_{F \in \mathcal{S}} \bigcup_{r \in Q_+} \mathcal{A}_{F, r}.
\]
Then \(\mathcal{J} \) is of the first Baire category in \(\mathcal{A}^b(X) \) and \(\mathcal{A}_+(X) \supseteq \mathcal{A}^b(X) \backslash \mathcal{J} \). Hence \(\mathcal{A}_+(X) \) is residual in \(\mathcal{A}^b(X) \) and the proof is complete. \(\Box \)

References

