Kantorovich’s type theorems for systems of equations with constant rank derivatives

Nuchun Hu, Weiping Shen, Chong Li*
Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China
Received 26 March 2007

Abstract
The famous Newton–Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton’s method to a solution of an equation. Here we present a “Kantorovich type” convergence analysis for the Gauss–Newton’s method which improves the result in [W.M. Häußler, A Kantorovich-type convergence analysis for the Gauss–Newton-method, Numer. Math. 48 (1986) 119–125.] and extends the main theorem in [I.K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004) 315–332]. Furthermore, the radius of convergence ball is also obtained. © 2007 Published by Elsevier B.V.

Keywords: Gauss–Newton’s method; Majorizing sequence; Semilocal convergence; Local convergence; Lipschitz condition

1. Introduction

Let $F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a nonlinear operator with its Frechét derivative denoted by F'. Finding solutions of a nonlinear operator equation

$$F(x) = 0$$

(1.1)

is a very general subject which is widely studied in both theoretical and applied areas of mathematics. In the case when $m = n$ and $F'(x)$ is invertible for each $x \in D$, the most important method to find an approximation solution is Newton’s method, which, with initial point $x_0 \in D$, is defined by

$$x_{k+1} = x_k - F'(x_k)^{-1}F(x_k) \quad \text{for each } k = 0, 1, 2, \ldots$$

(1.2)

One of the most famous results on Newton’s method is the well-known Kantorovich theorem (cf. [14]) which provides a simple and clear convergence criterion of Newton’s method based on the data around the initial point for functions having the bounded second derivative F'' (or the Lipschitz continuous first derivative). Another important result concerning Newton’s method is Smale’s point estimate theory, which gives a convergence criterion of Newton’s method only based on the information at the initial point for analytic functions (cf. [3,17–19]).

There are a lot of works on the weakness and/or extension of the hypothesis made on the functions, see for example, [1,8–12,22] and references therein. In particular, Wang introduced in [22] the notions of Lipschitz conditions with...
L average to unify both Kantorovich’s and Smale’s convergence criteria. While, Argyros in [1] used simultaneously the center Lipschitz condition (1.3) and the Lipschitz condition (1.4) below to improve Kantorovich’s convergence criterion:

\[\| F'(x_0)^{-1}(F'(x) - F'(x_0)) \| \leq K_0 \| x - x_0 \| \quad \text{for each } x \in D \]

and

\[\| F'(x_0)^{-1}(F'(x) - F'(y)) \| \leq K \| x - y \| \quad \text{for each } x, y \in D. \]

Other results such as estimates of the radii of convergence balls of Newton’s method are referred to [20,21,23,24].

Recent attentions are focused on finding zeros of singular nonlinear systems by Gauss–Newton’s method (abbrev. GNM), which is defined as follows (cf. [4]):

\[x_{k+1} = x_k - F'(x_k)^\dagger F(x_k) \quad \text{for each } k = 0, 1, 2, \ldots, \]

where \(x_0 \in D \) is an initial point and \(F'(x_k)^\dagger \) is the Moore–Penrose inverse of the linear operator (or matrix) \(F'(x_k) \). For example, Shub and Smale in [16] (resp. Dedieu and Shub in [7]) developed the convergence properties of GNM for underdetermined (resp. overdetermined) analytic systems with surjective (resp. injective) derivatives. Dedieu and Kim in [6] studied the convergence properties of GNM for analytic systems of equations with constant rank derivatives. In spirit of Wang’s idea of the Lipschitz conditions with \(L \) average, Li et al. established in [15] an unified convergence theorem for overdetermined systems with injective derivatives; while Xu and Li extended and improved in [25] the corresponding results in [6]. However, almost all the results above are local, that is, the convergence properties are closely dependent on the information around the least square solution of \(F \); and there has been little work on Kantorovich’s type convergence criterion of GNM in terms of the information around the initial point. Häußler considered in [13] a special class of singular nonlinear systems \(F \) together with the derivative \(F' \) satisfying

\[\| F'(y)^\dagger(I - F'(x)F'(x)^\dagger)F(x) \| \leq \bar{\kappa} \| x - y \| \quad \text{for each } x, y \in D, \]

where \(0 \leq \bar{\kappa} < 1 \), and established a Kantorovich’s type convergence criterion under the Lipschitz continuity of the first derivative \(F' \) on \(D \). In the present paper, we will incorporate the center Lipschitz continuity in the study of the convergence of GNM for the class of singular systems satisfying (1.6) and, with a different technique, establish a Kantorovich’s type convergence criterion. In particular, the convergence criterion produces a sharper one than that in [13] under the same hypothesis, which is also illustrated by an example; while, in the underdetermined case with surjective derivatives, it extends the corresponding result in [1, Theorem 1] for nonsingular system. Furthermore, as applications, an estimate of the radius of the convergence ball, which seems new, is presented in Section 4.

We end this introduction with a short remark that, following the technique in [13], Argyros in [2] used the center Lipschitz continuity to give a convergence criterion of GNM for singular system satisfying (1.6). However, our convergence criterion in the present paper is clearer than that in [2]; in particular, it is sharper in the special case when \(K = K_0 \) as shown in Remark 3.1.

2. Preliminaries

Let \(\alpha > 0, p > 0 \) and \(1 \geq q > 0 \). We begin with the majorizing function \(\varphi_q \) defined by

\[\varphi_q(t) = \frac{p}{2} t^2 - qt + \alpha \quad \text{for each } t \geq 0. \]

Clearly, if

\[\alpha \leq \frac{q^2}{2p}, \]

then the function \(\varphi_q \) has two zeros:

\[
\begin{align*}
 t^* & = \frac{q + \sqrt{q^2 - 2p\alpha}}{p} \\
 t^{**} & = \frac{q - \sqrt{q^2 - 2p\alpha}}{p}.
\end{align*}
\]
Let \(\{t_k\} \) be the sequence generated by
\[
t_0 = 0, \quad t_{k+1} = t_k - \frac{\varphi_q(t_k)}{\varphi_q'(t_k)} \quad \text{for each } k = 0, 1, \ldots .
\]
(2.4)

In particular, in the case when \(q = 1 \), (2.4) reduces to Newton’s sequence. The convergence property of the sequence \(\{t_k\} \) is described in the following lemma, which is crucial for the convergence analysis of the GNM.

Lemma 2.1. The sequence \(\{t_k\} \) is increasingly convergent to \(t^* \) if and only if (2.2) holds. In particular, in the case when \(q = 1 \), the following estimate holds:
\[
t^* - t_k = \frac{\xi^{2^k-1}}{\sum_{j=0}^{2^k-1} \xi^j} t^* \quad \text{for each } k = 0, 1, \ldots .
\]
where
\[
\xi = \frac{1 - \sqrt{1 - 2zp}}{1 + \sqrt{1 - 2zp}}.
\]
(2.6)

Proof. We first prove that for each \(k \in \mathbb{N} \),
\[
t_{k-1} < t_k < t^*.
\]
(2.7)

Granting this, one sees that \(\{t_k\} \) is increasing and bounded, and consequently \(\{t_k\} \) is increasingly convergent to \(t^* \).

To show (2.7), note that \(0 = t_0 < t_1 = x < t^* \), which means (2.7) holds for \(k = 1 \). Assume that \(t_0 < t_1 < \cdots < t_k < t^* \). Then one has \(\varphi_q(t_k) > 0 \) and
\[
-\varphi_q'(t_k) = 1 - pt_k > 1 - pt^* = (1 - q) + \sqrt{q^2 - 2zp} > 0.
\]
It follows that
\[
t_{k+1} = t_k - \frac{\varphi_q(t_k)}{\varphi_q'(t_k)} > t_k.
\]
(2.8)

Note that the function \(N_q \) defined by \(N_q(t) := t - \varphi_q(t)/\varphi_q'(t) \) for each \(t \in [0, t^*] \) has positive derivative on \([0, t^*] \) (Note: \(\varphi_q'(t^*) < 0 \), unless \(q = 1 \) and \(q^2 - 2zp = 0 \), in this case \(t^* = 1/p \), and, by L’Hospital’s rule, \(\varphi_q(t^*)/\varphi_q'(t^*) = 0 \).

One has that
\[
t_{k+1} = N_q(t_k) < N_q(t^*) = t^*.
\]
(2.9)

This together with (2.8) implies that (2.7) holds for \(k + 1 \) and the claim (2.7) is complete by mathematical induction. On the other hand, it is clear that the sequence \(\{t_k\} \) converging implies (2.1) having solution, and consequently (2.2) holds. Thus the proof of the first assertion is complete. The second assertion is well known, see for example [22]. \(\square \)

We conclude this section with some properties related to Moore-Penrose inverse, which are known in textbooks, see for example [5].

Let \(A : \mathbb{R}^m \rightarrow \mathbb{R}^n \) be a linear operator (or an \(m \times n \) matrix). Recall that an operator (or an \(n \times m \) matrix) \(A^\dagger : \mathbb{R}^m \rightarrow \mathbb{R}^n \) is the Moore–Penrose inverse of \(A \) if it satisfies the following four equations:
\[
AA^\dagger A = A, \quad A^\dagger AA^\dagger = A^\dagger, \quad (AA^\dagger)^* = AA^\dagger, \quad (A^\dagger A)^* = A^\dagger A,
\]
where \(A^* \) denotes the adjoint of \(A \). Let \(\ker A \) and \(\im A \) denote the kernel and image of \(A \), respectively. For a subspace \(E \) of \(\mathbb{R}^n \), we use \(\Pi_E \) to denote the projection onto \(E \). Then it is clear that
\[
A^\dagger A = \Pi_{(\ker A)^\perp} \quad \text{and} \quad AA^\dagger = \Pi_{\im A}.
\]
(2.10)

In particular, in the case when \(A \) is full row rank, \(AA^\dagger = I_{\mathbb{R}^m} \).
The following proposition gives a perturbation bound for Moore–Penrose inverse, which will be useful.

Proposition 2.1. Let A and B be $m \times n$ matrices. Assume
\[
\text{rank}(A) \leq \text{rank}(B) = l \geq 1 \quad \text{and} \quad \|A - B\| B^\dagger < 1.
\]
Then
\[
\text{rank}(A) = l \quad \text{and} \quad \|A^\dagger\| \leq \frac{\|B^\dagger\|}{1 - \|B^\dagger\| A - B}.
\]

3. Semilocal convergence analysis of the GNM

Let $B(x, r)$ and $\overline{B}(x, r)$ stand, respectively, for the open and closed ball in \mathbb{R}^n with center x and radius $r > 0$. Let $F : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a Frechét differentiable operator, where D is a convex set. Let $x_0 \in D$ be such that $F'(x_0) \neq 0$, or equivalently, rank$(F'(x_0)) \geq 1$. Let $\tilde{r} > 0$ be such that $B(x_0, \tilde{r}) \subseteq D$. Throughout the whole section, we will always assume that rank$(F'(x_0)) \leq \text{rank}(F'(x))$ for each $x \in B(x_0, \tilde{r})$,
\[
\|F'(x) - F'(y)\| \leq K\|x - y\| \quad \text{for each } x, y \in B(x_0, \tilde{r})
\]
and
\[
\|F'(x) - F'(x_0)\| \leq K_0\|x - x_0\| \quad \text{for each } x \in B(x_0, \tilde{r}).
\]
Clearly, (3.1) implies that (3.2) holds for some $0 \leq K_0 \leq K$. Furthermore, we will also assume that
\[
\|F'(y)^\dagger (I - F'(x)F'(x)^\dagger)F(x)\| \leq \bar{k}\|x - y\| \quad \text{for each } x, y \in B(x_0, \tilde{r})
\]
with $0 \leq \bar{k} < 1$. For convenience, we write
\[
\Delta := \frac{(1 - \bar{k})^2}{(\bar{k}^2 - \bar{k} + 1) + \sqrt{2\bar{k}^2 - 2\bar{k} + 1}}.
\]
Before verifying the main theorem, we need a simple lemma. For this purpose, let
\[
\alpha_F := \|F'(x_0)^\dagger F(x_0)\| \quad \text{and} \quad \beta_F := \|F'(x_0)^\dagger\|.
\]
Lemma 3.1. Suppose that $0 < r \leq \min(\tilde{r}, 1/(\beta_F K_0))$. Then, for each $x \in B(x_0, r)$, rank$(F'(x)) = \text{rank}(F'(x_0))$ and
\[
\|F'(x)^\dagger\| \leq \frac{\beta_F}{1 - \beta_F K_0\|x - x_0\|}.
\]
Proof. Let $x \in B(x_0, r)$. Then $\beta_F K_0\|x - x_0\| < \beta_F K_0 r \leq 1$. Hence, by (3.2), one has that
\[
\|F'(x_0)^\dagger\|\|F'(x) - F'(x_0)\| \leq \beta_F K_0\|x - x_0\| < 1.
\]
Thus Proposition 2.1 is applicable to complete the proof.

Set
\[
p = \frac{\beta_F K}{1 + (K - K_0)\alpha_F \beta_F} \quad \text{and} \quad q = 1 - \left(\frac{1 - \alpha_F \beta_F K_0}{1 + (K - K_0)\alpha_F \beta_F}\right)\bar{k}.
\]
Let t^* be defined by (2.3) and $\{t_k\}$ the sequence generated by (2.4) with $\alpha = \alpha_F$. Then the main theorem of the present paper can be stated as follows.

Theorem 3.1. Suppose that
\[
\alpha_F \beta_F \leq \frac{\Delta}{K - \Delta(K - K_0)} \quad \text{and} \quad t^* \leq \tilde{r}.
\]
Let \(\{x_k\} \) be the sequence generated by GNM (1.5) with initial point \(x_0 \). Then \(\{x_k\} \) converges to a zero \(x^* \) of \(F'(\cdot)^\top F(\cdot) \) in \(B(x_0, t^*) \) and the following estimate holds:
\[
\|x_k - x^*\| \leq t^* - t_k \quad \text{for each } k \geq 0.
\] (3.9)

Proof. Recall that \(p \) and \(q \) are given by (3.7). Simple calculation shows that the first inequality of (3.8) implies
\[
\alpha_F \leq \frac{q^2}{2p}.
\] (3.10)

Thus, by Lemma 2.1, \(\{t_k\} \) is strictly increasingly convergent to \(t^* \) and
\[
t^* \leq \frac{1 + (K - K_0)\alpha_F}{\beta_F K}.
\] (3.11)

Since \(\alpha_F = t_1 \leq t^* \), it follows from (3.11) that \(\beta_F K t^* \leq 1 + (K - K_0)\beta_F t^* \) and hence
\[
\beta_F K_0 t^* \leq 1.
\] (3.12)

Define
\[
G(x) := x - F'(x)^\top F(x) \quad \text{for each } x \in D.
\]

Let \(x \in B(x_0, t^*) \) be such that \(G(x) \in B(x_0, t^*) \). Then
\[
\|G^2(x) - G(x)\| \leq \frac{\beta_F K}{2(1 - \beta_F K_0\|G(x) - x_0\|)} \|G(x) - x\|^2 + \bar{\kappa}\|G(x) - x\|.
\] (3.13)

To see this, by (3.12), Lemma 3.1 is applicable to getting that
\[
\|F'(G(x))^\top\| \leq \frac{\beta_F}{1 - \beta_F K_0\|G(x) - x_0\|}.
\] (3.14)

Hence
\[
\|G^2(x) - G(x)\| \leq \left\| F'(G(x))^\top \int_0^1 \{F'(x + t(G(x) - x)) - F'(x)\} (G(x) - x) \, dt \right\| \\
+ \|F'(G(x))^\top (I - F'(x)F'(x)^\top) F(x)\|
\leq \|F'(G(x))^\top \int_0^1 \|F'(x + t(G(x) - x)) - F'(x)\| \|G(x) - x\| \, dt \\
+ \|F'(G(x))^\top (I - F'(x)F'(x)^\top) F(x)\|
\leq \frac{\beta_F K}{2(1 - \beta_F K_0\|G(x) - x_0\|)} \|G(x) - x\|^2 + \bar{\kappa}\|G(x) - x\|,
\]
where the last inequality holds because of (3.1), (3.3) and (3.14).

Below we shall verify that
\[
\|x_k - x_{k-1}\| \leq t_k - t_{k-1}
\] (3.15)
holds for each \(k = 1, 2, \ldots \) by mathematical induction.

It is clear that \(\|x_1 - x_0\| \leq \alpha_F = t_1 - t_0 \) which means (3.15) holds for \(k = 1 \). Assume that (3.15) holds for all \(k \leq j \). It follows that
\[
\|x_k - x_0\| \leq \sum_{i=1}^k \|x_i - x_{i-1}\| \leq t_k < t^* < \bar{\rho} \quad \text{for each } k = 1, 2, \ldots, j
\] (3.16)
thanks to (3.8). In particular, \(x_{j-1}, x_j \in B(x_0, t^* \leq B(x_0, \tilde{r}) \). Noting that \(x_k = G(x_{k-1}) \) for each \(k = 1, 2, \ldots \), we get from (3.13) that

\[
\|x_{j+1} - x_j\| \leq \frac{\beta_F K}{2(1 - \beta_F K_0 \|x_j - x_0\|)} \|x_j - x_{j-1}\|^2 + \tilde{k}\|x_j - x_{j-1}\|.
\]

(3.17)

Consequently,

\[
\|x_{j+1} - x_j\| \leq \frac{\beta_F K(t_j - t_{j-1})^2}{2(1 - \beta_F K_0 t_j)} + \tilde{k}(t_j - t_{j-1}).
\]

(3.18)

Since \(\alpha_F = t_1 \leq t_j \), we have

\[
1 - \frac{\beta_F K t_j}{1 + (K - K_0)\alpha_F \beta_F} \leq 1 - \frac{\alpha_F \beta_F K}{1 + (K - K_0)\alpha_F \beta_F}
\]

(3.19)

and

\[
\frac{1}{1 - \beta_F K t_j / (1 + (K - K_0)\alpha_F \beta_F)} \leq \frac{1}{1 - \beta_F K_0 t_j + (K - K_0)\beta_F (\alpha_F - t_j)} \geq \frac{1}{1 - \beta_F K_0 t_j}.
\]

(3.20)

Recalling definitions of \(p \) and \(q \) in (3.7), it follows from (3.18) to (3.20) that

\[
\|x_{j+1} - x_j\|
\leq \frac{1}{1 - \beta_F K t_j / (1 + (K - K_0)\alpha_F \beta_F)} \left(\frac{\beta_F K(t_j - t_{j-1})^2}{2(1 + (K - K_0)\alpha_F \beta_F)}
+ \left(1 - \frac{\alpha_F \beta_F K}{1 + (K - K_0)\alpha_F \beta_F} \right) \tilde{k}(t_j - t_{j-1}) \right)
\leq \frac{1}{1 - pt_j} \left(\frac{p}{2}(t_j - t_{j-1})^2 + (1 - q)(t_j - t_{j-1}) \right)
= \frac{1}{\varphi_1(t_j)} (\varphi_q(t_j) - \varphi_q(t_{j-1}) - \varphi'(t_{j-1})(t_j - t_{j-1}))
= t_{j+1} - t_j.
\]

(3.21)

This means that (3.15) holds for \(k = j + 1 \) and so for each \(k = 1, 2, \ldots \). Consequently, Lemma 2.1 is applicable to concluding that \(\{x_k\} \) converges to some point \(x^* \in B(x_0, t^* \)\). Since

\[
\|F'(x^*)^\dagger F(x_k)\| \leq \|F'(x^*)^\dagger (I - F'(x_k)F'(x_k)^\dagger)F(x_k)\|
+ \|F'(x^*)^\dagger \| \cdot \|F'(x_k)F'(x_k)^\dagger F(x_k)\|
\leq \tilde{k}\|x_k - x^*\| + \|F'(x^*)^\dagger\| \|F'(x_k)\| \|x_{k+1} - x_k\|.
\]

(3.22)

one sees that \(x^* \) is a zero of \(F'(\cdot)^\dagger F(\cdot) \) and the proof is complete. \(\square \)

Remark 3.1. In [2, Theorem 2], Argyros gave the following convergence criterion for GNM (1.5): there exists \(\delta \in [\tilde{k}, 1) \) such that for all \(n \geq 0 \),

\[
\left(\frac{1}{2} (1 - \delta) \delta^n K + \delta (1 - \delta^{n+1}) K_0 \right) \alpha_F \beta_F + (\tilde{k} - \delta)(1 - \delta) \leq 0,
\]

(3.23)

\[
\frac{\alpha_F \beta_F K_0}{1 - \delta} (1 - \delta^n) < 1 \quad \text{and} \quad s^* \leq \tilde{r},
\]

(3.24)
where \(s^* \) is the limit of the majorizing sequence \(\{s_k\} \) defined by
\[
 s_0 = 0, \quad s_1 = x_F, \quad s_{k+1} = s_k + \frac{1}{1 - \beta_F K s_k} \left(\frac{1}{2} \beta_F K (s_k - s_{k-1})^2 + \bar{k}(s_k - s_{k-1}) \right).
\]

Below we shall show that this convergence criterion is stronger than (3.8) in the case when \(K = K_0 \). In fact, in this case, sequence \(\{s_k\} \) reduces to
\[
 s_{k+1} = s_k + \frac{1}{1 - \beta_F K s_k} \left(\frac{1}{2} \beta_F K (s_k - s_{k-1})^2 + \bar{k}(s_k - s_{k-1}) \right),
\]
where \(s_0 = 0 \) and \(s_1 = x_F \). Note that the sequence \(\{t_k\} \) generated by (2.4) can be rewritten as (thanks to (3.21))
\[
 t_{k+1} = t_k + \frac{1}{1 - \beta_F K t_k} \left(\frac{1}{2} \beta_F K (t_k - t_{k-1})^2 + (1 - x_F \beta_F K) \bar{k}(t_k - t_{k-1}) \right),
\]
where \(t_0 = 0 \) and \(t_1 = x_F \). Hence
\[
 t^* \leq s^* \quad \text{and} \quad t_k \leq s_k \quad \text{for all} \quad k \geq 0.
\]
This implies that \(\{t_k\} \) is convergent and hence (3.8) holds thanks to Lemma 2.1.

In the special case when \(\bar{k} = 0 \), \(\Delta = \frac{1}{2} \) and \(q = 1 \). Therefore the following corollary is a direct consequence of Theorem 3.1 together with Lemma 2.1.

Corollary 3.1. Suppose that
\[
 x_F \beta_F (K + K_0) \leq 1, \quad t_1^* \leq \bar{r},
\]
and that
\[
 \|F'(y)^\dagger (I - F'(x)^\dagger F'(x)^\dagger) F(x)\| = 0 \quad \text{for each} \quad x, y \in B(x_0, \bar{r}).
\]
Let \(\{x_k\} \) be the sequence generated by GNM (1.5) with initial point \(x_0 \). Then \(\{x_k\} \) converges to a zero \(x^* \) of \(F'(\cdot)^\dagger F(\cdot) \) in \(B(x_0, t_1^*) \) and the following estimate holds:
\[
 \|x_k - x^*\| \leq \frac{\xi_1 x_k - 1}{\sum_{j=0}^{k-1} \xi_j} t_1^* \quad \text{for each} \quad k = 0, 1, \ldots,
\]
where \(t_1^* \) and \(\xi_1 \) are, respectively, defined by
\[
 t_1^* = 1 + (K - K_0) x_F \beta_F - \sqrt{(1 - (K + K_0) x_F \beta_F)(1 + (K - K_0) x_F \beta_F)} \quad \text{and}
\]
\[
 \xi_1 = \frac{1 - K_0 x_F \beta_F - \sqrt{(1 - (K + K_0) x_F \beta_F)(1 + (K - K_0) x_F \beta_F)}}{x_F \beta_F K}.
\]

In the special case when \(F'(x_0) \) is invertible, Argyros used in [1] the following Lipschitz conditions to analyze the convergence of Newton’s method.
\[
 \|F'(x_0)^\dagger (F'(x) - F'(y))\| \leq K \|x - y\| \quad \text{for each} \quad x, y \in B(x_0, \bar{r})
\]
and
\[
 \|F'(x_0)^\dagger (F'(x) - F'(x_0))\| \leq K_0 \|x - x_0\| \quad \text{for each} \quad x \in B(x_0, \bar{r}).
\]
It was proved in [1, Theorem 3.1] that if

there exists \(\delta \in [0, 1] \) such that \((K + \delta K_0) x_F \leq \delta\) and \(s^{**} \leq \tilde{r}\), \hspace{1cm} (3.33)

where \(s^{**} = 2x_F / (2 - \delta) \), then Newton’s method with initial point \(x_0 \) is convergent. Let \(\delta \in [0, 1] \) such that \((K + \delta K_0) x_F \leq \delta\). Then

\[
K_0 x_F \leq 1 \quad \text{and} \quad \frac{K x_F}{1 - x_F K_0} \leq \delta.
\]

The first inequality in (3.34) implies that

\[
x_F (K + K_0) = (K + \delta K_0) x_F + (1 - \delta) K_0 x_F \leq 1.
\]

Note that

\[
1 - (K + K_0) x_F \leq \frac{1}{1 - (K - K_0) x_F}.
\]

This together with the second inequality in (3.34) implies that

\[
(1 - \delta)^2 \leq \left(\frac{1 - K x_F}{1 - K_0 x_F} \right)^2 = \left(\frac{1 - (K + K_0) x_F}{1 - K_0 x_F} \right)^2 \leq \frac{1 - (K + K_0) x_F}{1 + (K - K_0) x_F}.
\]

On the other hand,

\[
\hat{r}^* = \frac{1 + (K - K_0) x_F - \sqrt{(1 - (K + K_0) x_F)(1 + (K - K_0) x_F)}}{K} = \frac{2x_F (1 + (K - K_0) x_F)}{(1 + (K - K_0) x_F) + \sqrt{(1 - (K + K_0) x_F)(1 + (K - K_0) x_F)}} = \frac{2x_F}{1 + \sqrt{(1 - (K + K_0) x_F)/(1 + (K - K_0) x_F)}}.
\]

Combining this with (3.36) gives that \(\hat{r}^* \leq s^{**} \). Therefore, (3.33) implies (3.37) below thanks to (3.35). Thus Corollary 3.2 below is an extension and improvement of [1, Theorem 1], in particular, a closed form of the estimate for \(\|x_k - x^*\| \) is presented in this corollary.

Corollary 3.2. Suppose that the Lipschitz conditions (3.31) and (3.32) hold. Let \(x_0 \in D \) be such that \(F'(x_0) \) is full row rank. Suppose that

\[
x_F (K + K_0) \leq 1 \quad \text{and} \quad \hat{r}^* \leq \tilde{r},
\]

where

\[
\hat{r}^* = \frac{1 + (K - K_0) x_F - \sqrt{(1 - (K + K_0) x_F)(1 + (K - K_0) x_F)}}{K},
\]

\[
\xi_1 = \frac{1 - K_0 x_F - \sqrt{(1 - (K + K_0) x_F)(1 + (K - K_0) x_F)}}{K x_F}.
\]

Proof. Define \(\tilde{F} = F'(x_0) \hat{F} \). We shall apply Corollary 3.1 to \(\tilde{F} \). For this end, take \(\tilde{r} = \hat{r}^* \) in Corollary 3.1. Then (3.31) and (3.32) imply that (3.1) and (3.2) are satisfied by \(\tilde{F} \). We claim that \(F'(x) \) is full row rank for each \(x \in B(x_0, \tilde{r}) \). In fact, since

\[
\tilde{r} = \hat{r}^* = \frac{1 + (K - K_0) x_F - \sqrt{(1 - (K + K_0) x_F)(1 + (K - K_0) x_F)}}{K} \leq \frac{1 + (K - K_0) x_F}{K}
\]

(3.40)
and \(\alpha_F = t_1 \leq \bar{r} \), it follows that
\[
K\bar{r} \leq 1 + (K - K_0) \alpha_F \leq 1 + (K - K_0)\bar{r},
\]
and consequently \(K_0\bar{r} \leq 1 \). Therefore, together with (3.32) it follows that, for each \(x \in \mathbf{B}(x_0, \bar{r}) \),
\[
\|F'(x_0) (F(x) - F'(x_0))\| \leq K_0 \|x - x_0\| < K_0\bar{r} \leq 1.
\]
By Banach Lemma, \((I_{\mathbb{R}^n} - F'(x_0) (F'(x) - F'(x_0)))^{-1} \) exists. Noting that \(F'(x_0) \) is full row rank, we have that \(F'(x_0) F'(x_0)^\dagger = I_{\mathbb{R}^n} \) and
\[
F'(x) = F'(x_0)(I_{\mathbb{R}^n} - F'(x_0) (F'(x) - F'(x_0))).
\]
This implies that \(F'(x) \) is full row rank because \(I_{\mathbb{R}^n} - F'(x_0) (F'(x) - F'(x_0)) \) is invertible; hence the claim stands. Thus, in view of the definition of the Moore-Penrose inverse, one sees that
\[
(F'(x))^\dagger = (F'(x_0))^\dagger F'(x) = F'(x)^\dagger F'(x_0)
\]
for each \(x \in \mathbf{B}(x_0, \bar{r}) \). (3.42)
This implies that (3.27) is satisfied by \(\widetilde{F} \) and that \(\{x_k\} \) coincides with the sequence generated by GNM (1.5) with initial point \(x_0 \) for \(\widetilde{F} \). Furthermore, since by (3.42)
\[
(F'(x_0))^\dagger = (F'(x_0)^\dagger F'(x_0))^\dagger = F'(x_0)^\dagger F'(x_0),
\]
(3.43)

it follows that
\[
\alpha_F = \|(F'(x_0)^\dagger F'(x_0))^\dagger F'(x_0)\| = \|F'(x_0)^\dagger F'(x_0)\| = \alpha_F
\]
and
\[
\beta_F = \|(F'(x_0)^\dagger F'(x_0))\| = \|I_{(\ker F'(x_0))^\perp}\| = 1.
\]
(3.45)
Hence (3.26) is satisfied thanks to (3.37). Therefore, Corollary 3.1 is applicable to \(\widetilde{F} \) and \(\{x_k\} \) converges to a zero \(x^* \) of \(F'(\cdot)^\dagger \widetilde{F}(\cdot) \). Noting that \(F'(\cdot)^\dagger \widetilde{F}(\cdot) = F'(\cdot)^\dagger F(\cdot) \) and \(F(\cdot) = F'(\cdot)(F'(\cdot)^\dagger F(\cdot)) \), it follows that \(x^* \) is a zero of \(F(\cdot) \). The proof is complete. \(\square \)

In [13], Häußler took \(\mathbf{K} = K_0 \) and proved that if
\[
\alpha_F \beta_F K \leq \frac{(1 - \bar{k})^2}{2} \quad \text{and} \quad s^* \leq \bar{r},
\]
(3.46)
where \(s^* = ((1 - \bar{k}) - \sqrt{(1 - \bar{k})^2 - 2s_F \beta_F K})/\beta_F K \), then GNM (1.5) with initial point \(x_0 \) converges to a zero \(x^* \) of \(F'(\cdot)^\dagger F(\cdot) \) in \(\mathbf{B}(x_0, s^*) \). Set
\[
\bar{r}^* = \frac{1 - (1 - \alpha_F \beta_F K)\bar{k} - \sqrt{(1 - (1 - \alpha_F \beta_F K)\bar{k})^2 - 2s_F \beta_F K}}{\beta_F K}.
\]
(3.47)
Clearly, \((1 - \bar{k})^2/2 \leq \bar{r}^* \). Note that the function \(t \mapsto 1 - t - \sqrt{(1 - t)^2 - a} \) with \(a = 2s_F \beta_F K \) is increasing on \([0, \bar{k}]\). It is seen that \(\bar{r}^* \leq s^* \). Therefore the following corollary improves [13, Theorem 2.4].

Corollary 3.3. Let \(x_0 \in D \) be such that \(F'(x_0) \neq 0 \). Suppose that \(\text{rank } (F'(x)) \leq \text{rank } (F'(x_0)) \) for each \(x \in D \) and that (3.1) holds. Let \(\alpha_F \) and \(\beta_F \) be defined by (3.5). If
\[
\alpha_F \beta_F K \leq \bar{r}^* \quad \text{and} \quad \bar{r}^* \leq \bar{r},
\]
(3.48)
then GNM (1.5) with initial point \(x_0 \) converges to a zero \(x^* \) of \(F'(\cdot)^\dagger F(\cdot) \) in \(\mathbf{B}(x_0, \bar{r}^*) \) and
\[
\|x_k - x^*\| \leq \bar{r}^* - t_k \quad \text{for each } k \geq 0.
\]
(3.49)

We now give an example for which Corollary 3.3 is applicable but neither [13, Theorem 2.4] nor [2, Theorem 2].
Example 3.1. Let $n = m = 2$ and let \mathbb{R}^2 be endowed with the l_1-norm. Let $D = \{ x = (\xi_1, \xi_2)^T : -1 < \xi_i < 1, \ i = 1, 2 \} \subseteq \mathbb{R}^2$, $x_0 = (\xi_0^1, \xi_0^2)^T = (\frac{1}{4}, 0)^T$, and $\bar{r} = \frac{18}{25}$. Define $F : D \to \mathbb{R}^2$ by

$$F(x) := \left(\frac{1}{2}(\xi_1 - \xi_2), 1 \right)^T$$

for each $x = (\xi_1, \xi_2)^T \in D$.

Then, for each $x = (\xi_1, \xi_2)^T \in D$,

$$F'(x) = \begin{pmatrix} 1 & -1 \\ \xi_1 - \xi_2 & -(\xi_1 - \xi_2) \end{pmatrix}$$

and

$$F'(x)^\dagger = \frac{1}{2(1 + (\xi_1 - \xi_2)^2)} \begin{pmatrix} 1 & \xi_1 - \xi_2 \\ -1 & -(\xi_1 - \xi_2) \end{pmatrix}.$$

Hence, for $x = (\xi_1, \xi_2)^T, y = (\zeta_1, \zeta_2)^T \in D$,

$$\|F'(x) - F'(y)\| = |(\xi_1 - \zeta_1) - (\xi_2 - \zeta_2)| \leq \|x - y\|.$$

This means that $K = K_0 = 1$. Since, for $x = (\xi_1, \xi_2)^T, y = (\zeta_1, \zeta_2)^T \in D$,

$$\|F'(y)^\dagger (I - F'(x)F'(x)^\dagger)F(x)\|$$

$$= \frac{1}{2(1 + (\xi_1 - \xi_2)^2)} \frac{2(\xi_1 - \xi_2)^2}{2(1 + (\xi_1 - \xi_2)^2)} \| (\xi_1 - \zeta_1) - (\xi_2 - \zeta_2) \|$$

$$= \frac{1}{2(1 + (\xi_1 - \xi_2)^2)} \frac{2(\xi_1 - \zeta_2)^2}{2(1 + (\xi_1 - \xi_2)^2)} \| (\xi_1 - \zeta_1) - (\xi_2 - \zeta_2) \|,$$

it follows that

$$\|F'(y)^\dagger (I - F'(x)F'(x)^\dagger)F(x)\| \leq \frac{2(\xi_1 - \xi_2)^2}{2(1 + (\xi_1 - \xi_2)^2)} \| x - y \| \leq \frac{2}{5} \| x - y \|$$

because

$$\frac{(\xi_1 - \xi_2)^2}{2(1 + (\xi_1 - \xi_2)^2)} = \frac{1}{2} \left(1 - \frac{1}{1 + (\xi_1 - \xi_2)^2} \right) \leq \frac{2}{5},$$

hence $\bar{k} = \frac{2}{5}$. Moreover,

$$\alpha_F = \|F'(x_0)^\dagger F(x_0)\| = \left\| \frac{8}{17} \begin{pmatrix} 1 & 4/4 \\ -1 & -4/4 \end{pmatrix} \right\| = \frac{33}{136} \quad (3.50)$$

and

$$\beta_F = \|F'(x_0)^\dagger\| = \left\| \frac{8}{17} \begin{pmatrix} 1 & 4/4 \\ -1 & -4/4 \end{pmatrix} \right\| = \frac{16}{17}. \quad (3.51)$$

Since

$$\alpha_F \beta_F K \leq \frac{66}{17^2} \geq \frac{9}{50} = \frac{(1 - \bar{k})^2}{2},$$
Theorem 2.4 in [13] is not applicable. On the other hand, Theorem 2 in [2] is not applicable too. In fact, since
\[
\frac{16}{17} \cdot \frac{33}{136} \delta + \left(\frac{2}{5} - \delta \right) (1 - \delta) \leq 0
\]
has no solutions, it follows that there does not exist \(\delta \in [0, 1) \) with \(\bar{\kappa} \leq \delta \) such that (3.23) satisfying for all \(n \geq 0 \). However, since
\[
\alpha_F \beta_F K = \frac{66}{172} \leq \frac{9}{19 + 5\sqrt{13}} = \frac{(1 - \bar{\kappa})^2}{(\bar{\kappa}^2 - \bar{\kappa} + 1) + \sqrt{2\bar{\kappa}^2 - 2\bar{\kappa} + 1}}
\]
and
\[
\tilde{r}^* = \frac{999 - \sqrt{44301}}{1530} \leq \frac{18}{25} = \bar{r},
\]
Corollary 3.3 is applicable.

We end this section with an example for which condition (3.27) in Corollary 3.1 is satisfied but \(F'(x) \) is not full row rank.

Example 3.2. Let \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by
\[
F(x) := \left(\frac{1}{2}(\xi_1 + \xi_2)^2, \frac{1}{2}(\xi_1 + \xi_2)^2 - 1 \right)^T.
\]
Then
\[
F'(x) = (\xi_1 + \xi_2) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}
\]
and
\[
F'(x)^\dagger = \frac{1}{4(\xi_1 + \xi_2)} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.
\]
Let \(\mathbb{R}^2 \) be endowed with the \(l_1 \)-norm. Therefore, for \(x = (\xi_1, \xi_2)^T, y = (\bar{\xi}_1, \bar{\xi}_2)^T \),
\[
\| F'(y)^\dagger (I - F'(x) F'(x)^\dagger) F(x) \| = \left\| \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\| = 0.
\]
Thus, for \(\bar{\kappa} = 0 \), we have
\[
\| F'(y)^\dagger (I - F'(x) F'(x)^\dagger) F(x) \| \leq \bar{\kappa} \| x - y \| \quad \text{for all } x, y \in \mathbb{R}^2.
\]

4. **Local convergence analysis of the GNM**

In this section, let \(x^* \in D \) be such that \(F(x^*) = 0 \) and \(F'(x^*) \neq 0 \). We shall assume that \(\text{rank}(F'(x)) \leq \text{rank}(F'(x^*)) \) for each \(x \in D \),
\[
\| F'(x) - F'(y) \| \leq K \| x - y \| \quad \text{for each } x, y \in D \tag{4.1}
\]
and
\[
\| F'(y)^\dagger (I - F'(x) F'(x)^\dagger) F(x) \| \leq \bar{\kappa} \| x - y \| \quad \text{for each } x, y \in D \tag{4.2}
\]
with \(0 \leq \bar{\kappa} < 1 \). Let \(\beta^* = \| F'(x^*)^\dagger \| \) and recall that \(\Delta \) is defined by (3.4). Then the local convergence result for GNM (1.5) is stated in the following theorem.
Theorem 4.1. Let
\[r = \frac{1 - 1/\sqrt{2A + 1}}{\beta^* K}. \]

Suppose that \(\mathcal{B}(x^*, 1/(\beta^* K)) \subseteq D. \) \hfill (4.4)

Then, for each \(x_0 \in \mathcal{B}(x^*, r) \), the sequence \(\{x_k\} \) generated by GNM (1.5) with initial point \(x_0 \) converges to a zero of \(F'(\cdot)F(\cdot) \).

Proof. Let \(x_0 \in \mathcal{B}(x^*, r) \). Then Lemma 3.1 implies that \(\text{rank}(F'(x_0)) = \text{rank}(F'(x^*)) \) and
\[\beta_F = \|F'(x_0)\|^2 \leq \frac{\beta^*}{1 - \beta^* K \|x^* - x_0\|^2}. \]

Hence \(\text{rank}(F'(x)) \leq \text{rank}(F'(x_0)) \) for each \(x \in D \). Let \(\bar{r} = 1/(\beta^* K) - \|x_0 - x^*\| \). Then, \(\mathcal{B}(x_0, \bar{r}) \subseteq D \) thanks to (4.4). By Corollary 3.3, it suffices to show that (3.48) holds. Note that
\[-F'(x_0)^\top F(x_0) = F'(x_0)^\top (F(x^*) - F(x_0)) = F'(x_0)(x^* - x_0) \]
\[= F'(x_0) \int_0^1 (F'(x_0 + \theta(x^* - x_0)) - F'(x_0))(x^* - x_0) \, d\theta + \Pi_{(\ker F'(x_0))} (x^* - x_0). \]

It follows from (4.1) and (4.5) that
\[\alpha_F = \|F'(x_0)\|^2 \]
\[\leq \frac{\beta^*}{1 - \beta^* K \|x^* - x_0\|^2} \frac{1}{2} K \|x^* - x_0\|^2 + \|x^* - x_0\| \]
\[= \frac{2 - \beta^* K \|x^* - x_0\|}{2(1 - \beta^* K \|x^* - x_0\|)^2} \|x^* - x_0\|. \]

Combining this with (4.5) gives that
\[\alpha_F \beta_F K \leq \frac{2 - \beta^* K \|x^* - x_0\|}{2(1 - \beta^* K \|x^* - x_0\|)^2} \beta^* K \|x^* - x_0\| \leq \Delta, \]
where the inequality holds because \(\beta^* K \|x^* - x_0\| \leq 1 - 1/\sqrt{2A + 1} \) and the function \(t \mapsto ((2 - t)/(2(1 - t)^2))t \) is increasing on \((0, 1)\). Hence the first inequality in (3.48) holds. On the other hand,
\[\bar{r}^* = \frac{1 - (1 - \alpha_F \beta_F K) \bar{r}}{\beta_F K} \]
\[= \frac{1 - (1 - \alpha_F \beta_F K) \bar{r} + \sqrt{(1 - (1 - \alpha_F \beta_F K) \bar{r})^2 - 2 \alpha_F \beta_F K \bar{r}}}{2 \alpha_F} \]
\[\leq \frac{2 \alpha_F}{1 - (1 - \alpha_F \beta_F K) \bar{r} + \sqrt{(1 - (1 - \alpha_F \beta_F K) \bar{r})^2 - 2 \alpha_F \beta_F K / (1 - \beta^* K \|x_0 - x^*\|)}} \]
\[= \frac{1 - (1 - \alpha_F \beta_F K) \bar{r} - \sqrt{(1 - (1 - \alpha_F \beta_F K) \bar{r})^2 - 2 \alpha_F \beta^* K / (1 - \beta^* K \|x_0 - x^*\|)}}{\beta^* K / (1 - \beta^* K \|x_0 - x^*\|)} \]
\[\leq \frac{1}{\beta^* K} - \|x^* - x_0\|. \]
where the first inequality holds because of (4.5). Therefore \(\tilde{t}^* \leq \bar{r} \), which together with (4.7) completes the proof of (3.48). The proof is complete. \(\square \)

In the case when \(F'(x^*) \) is full row rank, we can take \(\bar{r} = 0 \), and hence, \(\Delta = \frac{1}{2} \). Then, using a similar proof of Theorem 4.1, Corollary 3.2 yields the following result.

Corollary 4.1. Let \(x^* \in D \) be such that \(F(x^*) = 0 \) and \(F'(x^*) \) is full row rank. Suppose that
\[
\|F'(x^*)^{-1}(F'(x) - F'(y))\| \leq K\|x - y\| \quad \text{for all } x, y \in D
\]
and \(B(x^*, 1/K) \subseteq D \). Let \(r = (1 - 1/\sqrt{2})/K \) and let \(x_0 \in B(x^*, r) \). Then GNM (1.5) with initial point \(x_0 \) converges to a zero of \(F(x) = 0 \).

Acknowledgment

This project was supported in part by the National Natural Science Foundation of China (Grant 10671175) and Program for New Century Excellent Talents in University.

References