3. Proof Consider \((a+b)^2\). Since \((a+b)^2 = a^2 + ab + ba + b^2\), and \(a^2 = a\), so \(ab + ba = 0\). Now let \(b = a\), we have \(a + a = 0\). So \(ab = -ba = (-b)a = ba\), then \(R\) is commutative.

6. Proof Let \(R = \{0, a_1, L, a_n\}\), then \(\forall a_i (i = 1, L, n)\), \(a_i a_i, L, a_i a_n\) are relatively unequal, otherwise \(a_i a_k = a_i a_l\) for some \(k, l\), so \(a_i (a_k - a_l) = 0\), it is contradict. So \(\forall a_i\), \(a_i = a_i a_j\), for some \(j\). Therefore \(a_i x = a_i\) and \(x a_i = a_i\) have solutions in \((R, \cdot)\). By proposition 1.4, \((R, \cdot)\) is a group, so \((R, +, \cdot)\) is a division ring.

8. Proof First to prove \(R\) is a ring.

 Obviously, \((R, +)\) is an abelian group. Because matrix satisfies associative on multiplication, we only need to prove that \(\forall a, b \in R, ab \in R\). Let \(a = \begin{pmatrix} z & w \\ -w & z \end{pmatrix}, b = \begin{pmatrix} x & y \\ -y & x \end{pmatrix}\), then

 \[
 ab = \begin{pmatrix} zx - \overline{w y} & \overline{z y + w x} \\ -\overline{z y + w x} & zx - w y \end{pmatrix} \in R, \text{ so } R \text{ is a ring.}
 \]

 Now to prove \(R \cong K\).

 By the hint, to prove it is a ring isomorphism. It is easy.

14. Proof We have a fact: if \(p\) is prime, \(p | C_p^k\) for \(1 \leq k \leq p - 1\).

 For \(\forall r_1, r_2 \in R\), \(\phi(r_1 + r_2) = (r_1 + r_2)^p = r_1^p + r_2^p + \sum_{k=1}^{p-1} C_p^k r_1^k r_2^{p-k}\). By the fact, we have \(C_p^k r_1^k r_2^{p-k} = 0\) for \(1 \leq k \leq p - 1\). So

 \[
 \phi(r_1 + r_2) = r_1^p + r_2^p = \phi(r_1) + \phi(r_2) \].
\[\phi(r_1r_2) = (r_1r_2)^p = r_1^pr_2^p = \phi(r_1)\phi(r_2). \]

P133---P135

5. Proof Obviously, \(I \subset [R:I] \). \(\forall r_1, r_2 \in [R:I], r, x, y \in R \), we have \(x(r_1 - r_2) = xr_1 - xr_2 \in I \), and \(r(xr_1y) = (rx)r_1y \in I \), so \(r_1 - r_2, xr_1y \in [R:I] \).

10. Proof \(\forall I < Z \), then \((I,+)<(Z,+), \) since \((Z,+) \) is cyclic, so \((I,+)=nZ, \) for some \(n \). So \(Z \) is a principal ideal ring.

(b) let \(R \) be principal ideal ring and \(G \) be a ring, \(\phi : R \to G \) is a ring homomorphism. Then \(\phi(R) \) is a subring of \(G \). Let \(I < \phi(R) \), then \(\phi^{-1}(I) < R \), since \(R \) is principal ideal ring, so \(\phi^{-1}(I) \) is a principal ideal, that is \(\phi^{-1}(I) = (a) \), for some \(a \in R \). So \(I = (\phi(a)) \) is a principal ideal, then \(\phi(R) \) is principal ideal ring.

(c) According to (a), (b).

15. Proof Let \(S = R - \{ r \in R \mid r = 0 \text{ or } r \text{ is divisor} \}, \) \(\Omega = \{ I < R \mid I \cap S = \Phi \} \). By Zorn’s Lemma, \(\Omega \) contains a maximal ideal \(P \). Now to prove \(P \) is prime ideal. It is clear that \(P \subset \{ r \in R \mid r = 0 \text{ or } r \text{ is divisor} \} \).

For \(\forall x, y \in R, xy \in P \),

If \(x = 0 \) or \(y = 0 \), then \(x \in P \) or \(y \in P \);

If \(x \neq 0 \) and \(y \neq 0 \), suppose \(x \notin P \) and \(y \notin P \). Since \(xy \in P \), so there exists \(0 \neq r \in R \) such that \((xy)r = 0 \).

(i) if \(yr = 0 \), then \(y \in \{ r \in R \mid r = 0 \text{ or } r \text{ is divisor} \} \), so \(\langle P, y \rangle < R \), and \(\langle P, y \rangle \mid \Omega = \Phi \), it is contradict to the maximal of \(P \).

(ii) if \(yr \neq 0 \), then \(x \in \{ r \in R \mid r = 0 \text{ or } r \text{ is divisor} \} \), so \(\langle P, x \rangle < R \),
and \(\langle P, x \rangle \not| \Omega = \Phi \), it is contradict to the maximal of \(P \).

So \(P \) is prime ideal.

21. Proof (i) if \(m \) is prime, then prime and maximal ideals are both \(\{0\} \).

(ii) if \(m \) is not prime, let \(m = p_1^{n_1} \cdots p_r^{n_r} \), since \(Z_m \) is a principal ideal ring and \(Z_m \cong \mathbb{Z}/m\mathbb{Z} \), so all the ideals of \(Z_m \) can be viewed as \(n\mathbb{Z}/m\mathbb{Z} \) for some \(n \in \mathbb{Z} \). By the Theorem 2.16, \(P \) is prime ideal of \(Z_m \) if and only if \(Z_m/P \) is an integral domain. Since \(Z_m/P = Z/n\mathbb{Z} \cong \mathbb{Z} \), for some \(n \in \mathbb{Z} \), so \(n \) is prime (because \(Z \) is an integral domain if and only if \(n \) is prime) and \(n|m \). So \(P = Z_{p_i} \) for some \(p_i \). According to Theorem 2.20, similarly, maximal ideals are the same to the prime ideals.

23. Proof (a) Since \(e \) is a central idempotent in \(R \), so \(\forall a \in R \),
\[
e^2 = e, \quad ea = ae.
\]
\[
(1_r - e) a = 1_r a - ae = a 1_r - ae = a (1_r - e), \quad \text{and} \quad (1_r - e)^2 = 1_r - e.
\]

(b) \(\forall r_1, r_2, r \in R \), we have
\[
er_1 - er_2 = e(r_1 - r_2) \in eR \quad \text{and} \quad r_1 (er_2) = e(r_1 r_2) \in R,
\]
so \(eR < R \). Similarly \((1_r - e) R < R \).

Obviously, \(R = eR + (1_r - e) R \). \(\forall a \in eR \) \((1_r - e) R \),
\[
a = e r_1 = (1_r - e) r_2 \quad \text{for some} \quad r_1, r_2 \in R. \quad \text{So} \quad r_2 = e(r_1 + r_2) \in eR.
\]
So \(a = (1_r - e) e (r_1 + r_2) = (e - e^2)(r_1 + r_2) = 0 \), \(eR \) \((1_r - e) R = \{0\} \).

By Theorem 2.24, \(R \cong eR \times (1_r - e) R \).