Kantorovich-type convergence criterion for inexact Newton methods✩

Weiping Shena,∗, Chong Lib

a Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, PR China
b Department of Mathematics, Zhejiang University, Hangzhou, 310027, PR China

Article info

Article history:
Received 2 September 2008
Received in revised form 23 October 2008
Accepted 4 November 2008
Available online 13 November 2008

Keywords:
Nonlinear equation
Inexact Newton methods
Lipschitz condition
Kantorovich-type theorem

1. Introduction

Let X and Y be (real or complex) Banach spaces, D ⊆ X be an open subset and let F : D ⊆ X → Y be a nonlinear operator with continuous Fréchet derivative denoted by F′. Finding solutions of the nonlinear operator equation

\[F(x) = 0 \] (1.1)

in Banach spaces is a very general subject which is widely used in both theoretical and applied areas of mathematics. The most important method to find an approximation of a solution of (1.1) is Newton’s method which takes the following form:

\[x_{n+1} = x_n - F'(x_n)^{-1}F(x_n), \quad n = 0, 1, 2, \ldots \] (1.2)

The convergence issue of Newton’s method has been studied extensively, see for example [5,7,8,11,16–18,21–24]. These results can be distinguished into two classes. One is about local convergence discussing the properties of Newton’s method through the information depending on the solution x∗ of (1.1) (cf. [22–24]), and the other is about semilocal convergence which only deals with the initial point x0 (cf. [5,7,8,11,16–18,21]). Among the semilocal convergence results on Newton’s method, one of the famous results is the well-known Kantorovich’s theorem (cf. [11]) which, under the very mild condition that the first derivative F′ is Lipschitz continuous, provides the following convergence criterion of Newton’s method:

✩This project was supported in part by the National Natural Science Foundations of China (Grant Nos. 10671175; 10731060).

* Corresponding author.

E-mail addresses: shenweiping@zjnu.cn (W.P. Shen), cli@zju.edu.cn (C. Li).

© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
where γ is the Lipschitz constant and $\alpha \geq \|F(x_0)^{-1}F(x_0)\|$.

As expressed in (1.2), we have to solve the following Newton equation at each Newton step:

$$F'(x_n)s_n = -F(x_n).$$ \hfill (1.4)

This sometimes makes Newton’s method inefficient from the point of view of practical calculations especially when $F'(x_n)$ is large and sparse. While using linear iterative methods to approximate the solution of (1.4) instead of solving it exactly can reduce some of the costs of Newton’s method which was studied extensively and applied in [1–3,6,10,14,19,25] (such a variant is the so-called inexact Newton method). In general, the inexact Newton method has the following general form:

Algorithm A[r_n; x_0]. For $n = 0$ and a given initial guess x_0 until convergence do

1. For the residual r_n and the iteration x_n, find the step s_n satisfying

 $$F'(x_n)s_n = -F(x_n) + r_n.$$ \hfill (1.5)

2. $x_{n+1} = x_n + s_n$.

3. Set $n = n + 1$ and turn to Step 1.

Here r_n is a sequence of elements in Y (depending on $\{x_n\}$ in general).

As it is well known, the convergence behavior of the inexact Newton method depends on the residual controls of $\{r_n\}$. Several authors (cf. [6,19]) have analyzed the local convergence behavior in some manner such that the stopping relative residuals $|r_n|$ satisfy $\|r_n\| \leq \eta_n\|F(x_n)\|$. Ypma used in [25] the affine invariant condition $\|F'(x_n)^{-1}r_n\| \leq \eta_n\|F'(x_n)\|$, which makes the method become an affine invariant one, and analyzed also the local convergence property of the inexact Newton method.

The above results concern mainly with the local convergence of the inexact Newton method. In the spirit of Kantorovich’s theorem, the semi-local convergence analysis for the inexact Newton method was studied recently. As in the case of the local convergence analysis, different residual controls were used. For example, the residual controls $\|r_n\| \leq \eta_n\|F(x_n)\|$ was adopted in [2]; while in [1], Argyros considered the residual controls $\|r_n\| \leq d_nh_n/c_n$ where $\{d_n\}$, $\{h_n\}$ and $\{c_n\}$ are real sequences satisfying some suitable conditions.

In particular, Guo considered in her recent paper [10] the residual controls

$$\|F'(x_0)^{-1}r_n\| \leq \eta_n\|F'(x_0)^{-1}F(x_n)\|$$ \hfill (1.6)

and, under the Lipschitz continuity assumption on F', established the following convergence criterion for the inexact Newton method (cf. [10, Theorem 2.6]):

$$\alpha \gamma \leq \sqrt{(4\eta + 5)^2 - 2\eta^2 - 14\eta - 11} \quad \frac{1}{(1 + \eta)(1 - \eta)^2},$$ \hfill (1.7)

where α, γ are the same as in (1.3) and $\eta := \sup_{n \geq 0} \eta_n$. However, the criterion (1.7) is not satisfactory; in particular, the convergence criterion in the case when $\eta_n \equiv 0$ is much worse than the criterion (1.3).

Motivated by the ideas of the inexact Newton-like method for the inverse eigenvalue problem (cf. [4]), the authors of the present paper presented in [12] the following residual controls:

$$\|P_n r_n\| \leq \eta_n\|P_n F(x_n)\|^{1+\beta} \quad \text{for each } n \in \mathbb{N},$$ \hfill (1.8)

where $\{P_n\}$ is a sequence of invertible operators from Y to X and $0 < \beta < 1$, and established the local convergence of order $1 + \beta$ for inexact Newton-like methods. A semi-local convergence analysis for inexact Newton-like methods under the (L, p)-Hölder condition on $F'(x_0)^{-1}F'$ was done in [15] for the residual controls (1.8) with $\beta > 0$. Obviously, in the special case when $P_n = F'(x_0)^{-1}$, (1.8) reduces to

$$\|F'(x_0)^{-1}r_n\| \leq \eta_n\|F'(x_0)^{-1}F(x_n)\|^{1+\beta} \quad \text{for each } n \in \mathbb{N}.$$ \hfill (1.9)

In the present paper, by considering the residual controls (1.9), we continue our study on the convergence criterion of the inexact Newton method. Under the assumption of the Lipschitz continuity of $F'(x_0)^{-1}F'$, we establish a Kantorovich-type convergence criterion for the inexact Newton method Algorithm A[r_n; x_0]. Note that in the special case when $\beta = 0$, (1.9) reduces to Guo’s controls (1.6) and our result extends the corresponding one in [10]. In particular, we get the following convergence criterion:

$$\alpha \gamma \leq \frac{(1 - \eta)^2}{(1 + \eta)(2(1 + \eta) - \eta(1 - \eta)^2)},$$ \hfill (1.10)
which is better than (1.7) for $\eta \in [0, \frac{1}{2}]$ as showed in the last section. For the case when $\beta = 1$, our result in the present paper is better than the corresponding one in paper [15]. Moreover, for the case when $0 < \beta < 1$, our main result is also sharper than the corresponding one in paper [15] for the case when $\gamma \geq 1$. It is worth to be remarked that our results obtained in the present paper include Kantorovich’s theorem as a special case. Our approach is based on the construction of the majorizing function, which is completely different from that used in [10].

2. Preliminaries

Let X and Y be Banach spaces. Throughout the whole paper, we use $B(x, r)$ to stand for the open ball in X with center x and radius $r > 0$, and assume that $0 \leq \beta \leq 1$. Let σ, λ, and θ be positive constants. We define two real-valued functions φ_β and ψ_β respectively by

$$
\varphi_\beta(t) = \frac{\sigma}{2} t^2 + 2^{1-\beta} \theta t^{1+\beta} - (1 + \theta)t + \lambda \quad \text{for each } t \geq 0
$$

and

$$
\psi_\beta(t) = \frac{\sigma}{2} t^2 + \theta t^{1+\beta} - (1 + \theta)t + \lambda \quad \text{for each } t \geq 0.
$$

The derivatives of φ_β and ψ_β are respectively

$$
\varphi_\beta'(t) = \sigma t + 2^{1-\beta}(1 + \beta)\theta t^\beta - (1 + \theta) \quad \text{for each } t \geq 0
$$

and

$$
\psi_\beta'(t) = \sigma t + (1 + \beta)\theta t^\beta - (1 + \theta) \quad \text{for each } t \geq 0.
$$

Hence

$$
-\psi_\beta'(t) \geq -\varphi_\beta'(t) \quad \text{for each } t \geq 0.
$$

Furthermore, we assume that $\theta < 1$ in the case when $\beta = 0$. By (2.3), the derivative φ_β' is strictly increasing and has the values $\varphi_\beta'(0) < 0$ and $\varphi_\beta'(+\infty) = +\infty$. It follows that the equation $\varphi_\beta'(t) = 0$ has a unique positive solution. In the remainder, we denote the solution by r_\ast, that is, r_\ast satisfies

$$
\varphi_\beta'(r_\ast) = \sigma r_\ast + 2^{1-\beta}(1 + \beta)\theta r_\ast^\beta - (1 + \theta) = 0.
$$

Write

$$
b := \frac{\sigma}{2} r_\ast^2 + \beta 2^{1-\beta} \theta r_\ast^{1+\beta}.
$$

Thus, we are ready to prove the following lemma which describes some useful properties of the function φ_β.

Lemma 2.1. Let φ_β be defined by (2.1). Then φ_β is strictly decreasing on $[0, r_\ast]$ and satisfies that

$$
\varphi_\beta(r_\ast) = \lambda - b.
$$

Moreover, if

$$
\lambda \leq b,
$$

then φ_β has a unique zero t^\ast in $[0, r_\ast]$.

Proof. By (2.3) and (2.6), φ_β' is negative on $[0, r_\ast)$; hence φ_β is strictly decreasing on $[0, r_\ast]$. Since, by (2.1),

$$
\varphi_\beta(r_\ast) = \frac{\sigma}{2} r_\ast^2 + 2^{1-\beta} \theta r_\ast^{1+\beta} - (1 + \theta)r_\ast + \lambda
$$

$$
= (\sigma r_\ast + 2^{1-\beta}(1 + \beta)\theta r_\ast^\beta - (1 + \theta))r_\ast - \left(\frac{\sigma}{2} r_\ast^2 + \beta 2^{1-\beta} \theta r_\ast^{1+\beta}\right) + \lambda,
$$

it follows from (2.6) and (2.7) that (2.8) holds.

Now assume that (2.9) holds. Then, $\varphi_\beta(r_\ast) \leq 0$ by (2.8). Note that φ_β is strictly decreasing on $[0, r_\ast]$ and that $\varphi_\beta(0) > 0$. Therefore, φ_β has a unique zero t^\ast in $[0, r_\ast]$, and the proof is complete. □

Let $t_0 = 0$ and let $\{t_n\}$ denote the sequence generated by

$$
t_{n+1} = t_n - \frac{\varphi_\beta(t_n)}{\psi_\beta'(t_n)} \quad \text{for each } n = 0, 1, \ldots.
$$

The convergence property of the sequence $\{t_n\}$, which will play a key role, is described in the following lemma.
Lemma 2.2. Suppose that (2.9) holds. Let t^* be the unique zero of φ_β in $[0, r_*=)$ and let $\{t_n\}$ be the sequence generated by (2.11). Then

$$t_n < t_{n+1} < t^* \quad \text{for each } n \in \mathbb{N}.$$ \hspace{1cm} (2.12)

Consequently, $\{t_n\}$ converges increasingly to t^*. Moreover, in the special case when $\beta > 0$,

$$t_{n+1} - t_n \leq \frac{\lambda}{1 + \theta} \quad \text{for each } n \in \mathbb{N}.$$ \hspace{1cm} (2.13)

Proof. We will verify (2.12) by mathematical induction. To prove (2.12) holds for $n = 0$, we note that

$$t_1 = \begin{cases} \lambda, & \beta = 0; \\ \frac{\lambda}{1 + \theta}, & \beta > 0. \end{cases}$$ \hspace{1cm} (2.14)

Then $t_1 \leq r_*$. In fact, if $\beta > 0$, then by (2.7) and (2.6),

$$b = \frac{\sigma}{2} r_*^2 + \beta 2^{1-\beta} \sigma r_*^{1+\beta} \leq (\sigma r_* + 2^{1-\beta} (1 + \beta) \sigma r_*^\beta) r_* = (1 + \theta) r_*;$$

hence $\frac{b}{1 + \theta} \leq r_*$ and so $t_1 = \frac{\lambda}{1 + \theta} \leq \frac{b}{1 + \theta} \leq r_*$ by (2.9). If $\beta = 0$, then by (2.7) and (2.6),

$$b = \frac{\sigma}{2} r_*^2 \leq \sigma r_*^2 = (1 - \theta) r_* \leq r_*;$$

hence $t_1 = \lambda \leq b \leq r_*$ by (2.9).

Furthermore, since

$$\varphi_\beta(t_1) = \begin{cases} \frac{\sigma}{2} \lambda^2 + \theta \lambda > 0, & \beta = 0; \\ \frac{\sigma}{2} \left(\frac{\lambda}{1 + \theta} \right)^2 + 2^{1-\beta} \theta \left(\frac{\lambda}{1 + \theta} \right)^{1+\beta} > 0, & \beta > 0. \end{cases}$$

(2.12) holds for $n = 0$ because $\varphi_\beta(t_1) > 0$ and $\varphi(t^*) = 0$.

Now assume that $t_1 < t_2 < \cdots < t_n < t^*$. Then,

$$\varphi_\beta(t_n) > 0$$ \hspace{1cm} (2.17)

and $t_n < r_*$. Thus, thanks to (2.5), (2.6) and the fact that $\varphi_\beta'(t)$ is strictly increasing, one has

$$-\varphi_\beta'(t_n) \geq -\varphi_\beta'(t_1) > -\varphi_\beta'(r_*) = 0.$$ \hspace{1cm} (2.18)

This and (2.17) imply that

$$t_{n+1} = t_n - \frac{\varphi_\beta(t_n)}{\varphi_\beta'(t_n)} > t_n.$$ \hspace{1cm} (2.19)

On the other hand, by (2.5) and (2.17), $t_{n+1} \leq t_n - \varphi_\beta'(t_n)/\varphi_\beta'(t_n)$. Since the function $t \mapsto t - \varphi_\beta(t)/\varphi_\beta'(t)$ is monotonically increasing on $[0, t^*]$, it follows that

$$t_{n+1} \leq t_n - \frac{\varphi_\beta(t_n)}{\varphi_\beta'(t_n)} < t^* - \frac{\varphi_\beta(t^*)}{\varphi_\beta'(t^*)} = t^*.$$ \hspace{1cm} (2.20)

Hence, (2.12) holds for each $n \geq 0$. This means that $\{t_n\}$ converges increasingly to a point, say ς. Clearly $\varsigma \in [0, t^*]$ and ς is a zero of φ_β (cf. (2.11)). Noting that t^* is the unique zero of φ_β in $[0, r_*=)$, one has that $\varsigma = t^*$ and so $\{t_n\}$ converges increasingly to t^*.

Finally, suppose that $\beta > 0$. By (2.5) and (2.17),

$$t_{n+1} - t_n = -\frac{\varphi_\beta(t_n)}{\varphi_\beta'(t_n)} \leq -\frac{\varphi_\beta(t_0)}{\varphi_\beta'(t_0)} = \frac{\lambda}{(1 + \theta)} \quad \text{for each } n = 0, 1, \ldots.$$ \hspace{1cm} (2.21)

where the last inequality holds because the function M defined by $M(t) := -\varphi_\beta(t)/\varphi_\beta'(t)$ for each $0 \leq t \leq t^*$ is monotonically decreasing. Noting that $-\varphi_\beta'(t_0)/\varphi_\beta'(t_0) = \lambda/(1 + \theta)$, we see that (2.13) holds by (2.21). This completes the proof. \square
3. Kantorovich-type convergence criterion

Recall that $F : D \rightarrow Y$ is an operator with continuous Fréchet derivative denoted by F'. Let $x_0 \in D$ be such that the inverse $F'(x_0)^{-1}$ exists. We say that $F'(x_0)^{-1}F'$ satisfies Lipschitz condition on $B(x_0, r)$ with the Lipschitz constant γ if

$$
\|F'(x_0)^{-1}(F(x) - F(y))\| \leq \gamma \|x - y\| \quad \text{for all } x, y \in B(x_0, r).
$$

(3.1)

Assume that $B(x_0, \frac{1}{\gamma}r) \subseteq D$ throughout the whole paper. The following lemma can be proved by Banach’s Lemma with a standard argument, see for example [21].

Lemma 3.1. Let $r \leq \frac{1}{\gamma}$ and let $x \in B(x_0, r)$. Then $F'(x)$ is invertible and satisfies that

$$
\|F'(x)^{-1}F'(x_0)\| \leq \frac{1}{1 - \gamma \|x - x_0\|}.
$$

(3.2)

For the remainder of the present paper, we assume that the residuals $\{r_n\}$ satisfy (1.9) and that $\eta := \sup_{n \geq 0} \eta_n < 1$. Let $\alpha := \|F'(x_0)^{-1}F(x_0)\|$. (3.3)

Without loss of generality, we may assume throughout that x_0 is not a zero of F. This means that $\alpha > 0$. Write

$$
\sigma := \frac{\gamma (1 + \eta)^{1/(1 + \beta)}}{(1 + \alpha \gamma \eta(1 + \eta))(1 + \eta(\alpha^\beta - 1))},
\theta := \frac{\eta}{1 + \eta(\alpha^\beta - 1)}
$$

(3.4)

and

$$
\lambda := \begin{cases}
\alpha(1 + \eta), & \beta = 0; \\
\alpha(1 + \eta^{1/(1 + \beta)})(1 + \theta), & \beta > 0.
\end{cases}
$$

(3.5)

Recall that r_* is the unique positive zero of ψ'_θ (that is, r_* satisfies (2.6)) and that $\{r_n\}$ denotes the sequence generated by (2.11) with σ, θ and λ given by (3.4) and (3.5). The main theorem now can be stated as follows.

Theorem 3.1. Let σ and θ be given by (3.4). Suppose that $F'(x_0)^{-1}F'$ satisfies the Lipschitz condition on $B(x_0, t^*)$ with the Lipschitz constant γ. Suppose that

$$
\alpha \leq \begin{cases}
\frac{(1 - \eta^2)}{\gamma(1 + \eta)(2(1 + \eta) - \eta(1 - \eta)^2)}, & \beta = 0; \\
\min\left\{ \frac{\sigma r_*^2 + 2\beta 2^{1 - \beta} \sigma r_*^{1 + \beta}}{2(1 + \theta)(1 + \eta^{1/(1 + \beta)})}, \eta^{-1/(1 + \beta)} \right\}, & \beta > 0.
\end{cases}
$$

(3.6)

Let $\{x_n\}$ be the sequence generated by Algorithm $A[r_n; x_0]$. Then $\{x_n\}$ converges to a solution x^* of (1.1) and the following assertion holds:

$$
\|x_n - x^*\| \leq t^* - r_n \quad \text{for each } n \in \mathbb{N}.
$$

(3.7)

Proof. Let b be defined by (2.7). We assert that

condition (3.6) holds $\iff [\lambda \leq b$ and $\sigma^\beta \eta^{\beta/(1 + \beta)} \leq 1]$. (3.8)

In the case when $\beta > 0$, (3.8) is a direct consequence of the definitions of b and λ respectively given in (2.7) and (3.5). In the case when $\beta = 0$, (2.6) and (2.7) reduce to

$$
\sigma r_* = 1 - \theta \quad \text{and} \quad b = \frac{\sigma}{2} r_*^2.
$$

Furthermore,

$$
\sigma = \frac{\gamma(1 + \eta)}{1 + \alpha \gamma \eta(1 + \eta)}, \quad \theta = \eta \quad \text{and} \quad \lambda = \alpha(1 + \eta).
$$

It follows that

$$
b = \frac{\sigma}{2} r_*^2 = \frac{(1 - \theta)^2}{2\sigma} = \frac{(1 - \eta)^2(1 + \alpha \gamma \eta(1 + \eta))}{2\gamma(1 + \eta)}.
$$

Consequently,
\[
\alpha (1 + \eta) \leq \frac{(1 - \eta)^2 (1 + \alpha \eta (1 + \eta))}{2 \gamma (1 + \eta)} \iff \lambda \leq b.
\] (3.9)

This is equivalent to the assertion (3.8) because \(\alpha^\beta \eta^{\beta/(1+\beta)} \leq 1\) holds automatically for \(\beta = 0\). Thus (3.8) is proved and Lemma 2.2 is applicable to concluding that (2.12) and (2.13) hold. To complete the proof, it is sufficient to verify that
\[
\frac{1 + \eta^{1/(1+\beta)}}{1 - \gamma t_n} \| F'(x_0)^{-1} F(x_n) \| \leq t_{n+1} - t_n
\] (3.10)

and
\[
\| x_{n+1} - x_n \| \leq t_{n+1} - t_n
\] (3.11)

hold for each \(n \in \mathbb{N}\). In fact, granting this, one has from (3.11) that
\[
\| x_{n+m} - x_n \| \leq \sum_{i=1}^{m} \| x_{n+i} - x_{n+i-1} \| \leq \sum_{i=1}^{m} (t_{n+i} - t_{n+i-1}) = t_{n+m} - t_n.
\] (3.12)

Therefore \(\{x_n\}\) is a Cauchy sequence and (3.7) holds by letting \(m \to \infty\) in (3.12). Moreover, letting \(n \to \infty\) in (3.10) shows that the limit \(x^*\) is a solution of (1.1).

Below, we will prove (3.10) and (3.11) by mathematical induction. Note first that, by (1.9), if \(n \in \mathbb{N}\) is such that \(x_n\) is well-defined, then
\[
\| F'(x_0)^{-1} r_n \| \leq \eta \| F'(x_0)^{-1} F(x_n) \|^{1+\beta} \leq \eta \| F'(x_0)^{-1} F(x_n) \|^{1+\beta}.
\] (3.13)

Since \(t_1 = \alpha (1 + \eta^{1/(1+\beta)})\), (3.10) is clear for \(n = 0\) by the definition of \(\alpha\). By (3.13),
\[
\| x_1 - x_0 \| = \| - F'(x_0)^{-1} F(x_0) + F'(x_0)^{-1} r_0 \| \leq \alpha + \eta \alpha^{1+\beta}.
\] (3.14)

Using (3.6), one has that \(\eta \alpha^\beta \leq \eta^{1/(1+\beta)}\). This together with (3.14) yields that
\[
\| x_1 - x_0 \| \leq \alpha + \eta \alpha^{1+\beta} \leq \alpha (1 + \eta^{1/(1+\beta)}) = t_1 - t_0.
\]

This shows that (3.11) holds for \(n = 0\). Assume now that (3.10) and (3.11) hold for all \(n \leq m - 1\). We have to prove (3.10) and (3.11) hold for \(n = m\). For this end, we apply Algorithm \(A[r_n; x_0]\) to get that
\[
F(x_m) = F(x_{m-1}) - F'(x_{m-1})(x_m - x_{m-1}) + r_{m-1}
\]
\[
= \int_0^{1} F'(x_{m-1})^T \tau (x_m - x_{m-1}) - F'(x_{m-1})(x_m - x_{m-1}) + r_{m-1}.
\]

where \(x_{m-1}^T = x_m + \tau (x_{n+1} - x_n)\) for each \(0 \leq \tau \leq 1\). Hence,
\[
\| F'(x_0)^{-1} F(x_m) \| \leq \int_0^{1} (F'(x_{m-1})^T - F'(x_{m-1})) (x_m - x_{m-1}) \, d\tau (x_m - x_{m-1}) + \| F'(x_0)^{-1} r_{m-1} \|.
\] (3.15)

Below we will show that
\[
\int_0^{1} (F'(x_{m-1})^T - F'(x_{m-1})) (x_m - x_{m-1}) \, d\tau \leq \frac{\gamma}{2} (t_m - t_{m-1})^2
\] (3.16)

and
\[
\| F'(x_0)^{-1} r_{m-1} \| \leq \eta (1 + \eta^{1/(1+\beta)})^{-1+\beta} (t_m - t_{m-1})^{1+\beta}.
\] (3.17)

Since (3.11) holds for all \(n \leq m - 1\), one has that
\[
\| x_{m-1}^T - x_0 \| \leq \sum_{i=0}^{m-2} \| x_{i+1} - x_i \| + \tau \| x_m - x_{m-1} \| \leq \sum_{i=0}^{m-2} (t_{i+1} - t_i) + \tau (t_m - t_{m-1}).
\] (3.18)

Hence, by (2.12),
\[
\| x_{m-1}^T - x_0 \| \leq \tau t_m + (1 - \tau) t_{m-1} < t^*.
\] (3.19)

In particular,
\[\|x_m - x_0\| \leq t_m < t^* \quad \text{and} \quad \|x_{m-1} - x_0\| \leq t_{m-1} < t^*. \]

(3.20)

Thus, applying the Lipschitz condition, we get that

\[
\|F'(x_0)^{-1} \int_0^1 (F'(x_{m-1}) - F'(x_m))(x_m - x_{m-1}) \, dt\|
\leq \int_0^1 \gamma \|x_{m-1} - x_m\| \|x_m - x_{m-1}\| \, dt
\leq \gamma \|x_{m-1} - x_m\|^2
\leq \gamma (t_m - t_{m-1})^2, \tag{3.21}
\]

where the last inequality holds because of (3.11) (with \(n = m - 1\)). This completes the proof of (3.16). To show (3.17), we note by (3.10) (with \(n = m - 1\)) that

\[
\|F'(x_0)^{-1} F(x_{m-1})\| \leq (1 + \eta^{1/(1+\beta)})^{-1} (t_m - t_{m-1}).
\]

Thus, we have by (3.13) that

\[
\|F'(x_0)^{-1} t_{m-1}\| \leq \eta \|F'(x_0)^{-1} F(x_{m-1})\|^{1+\beta} \leq \eta (1 + \eta^{1/(1+\beta)})^{-1-\beta} (t_m - t_{m-1})^{1+\beta}. \tag{3.22}
\]

Therefore, (3.17) is proved. Combining (3.15)--(3.17), one has that

\[
\|F'(x_0)^{-1} F(x_m)\| \leq \frac{\gamma}{2} (t_m - t_{m-1})^2 + \frac{\eta(1 + \eta^{1/(1+\beta)})^{-1}}{1 - \gamma t_m} (t_m - t_{m-1})^{1+\beta}. \tag{3.23}
\]

Hence,

\[
\frac{1 + \eta^{1/(1+\beta)}}{1 - \gamma t_m} \|F'(x_0)^{-1} F(x_m)\| \leq \frac{\gamma(1 + \eta^{1/(1+\beta)})}{2(1 - \gamma t_m)} (t_m - t_{m-1})^2 + \frac{\eta(1 + \eta^{1/(1+\beta)})^{-1}}{1 - \gamma t_m} (t_m - t_{m-1})^{1+\beta}. \tag{3.24}
\]

We claim that

\[
\sigma (1 - \gamma t) \geq \psi'(\beta)(t)(1 + \eta^{1/(1+\beta)}) \geq 0 \quad \text{for each} \quad t \in [t_1, r_\ast]. \tag{3.25}
\]

In fact, let \(t \in [t_1, r_\ast].\) Then, by the definition of \(\lambda,
\]

\[
\alpha(1 + \eta^{1/(1+\beta)}) = t_1 \leq t.
\]

(3.26)

Since \(\eta \leq \eta^{1/(1+\beta)} \) (noting \(\eta < 1\)), it follows that

\[
1 + \alpha \gamma \eta (1 + \eta) \leq 1 + \alpha \gamma \eta^{1/(1+\beta)} (1 + \eta^{1/(1+\beta)}) \leq 1 + \gamma \eta^{1/(1+\beta)} t. \tag{3.27}
\]

Noting that \(\theta = \eta/(1 + \eta(\alpha^\beta - 1))\) and thanks to (3.26), one has that

\[
\frac{1}{1 + \eta(\alpha^\beta - 1)} = 1 + \theta (1 - \alpha^\beta)
\geq 1 + \theta - (1 + \beta) \theta \alpha^\beta (1 + \eta^{1/(1+\beta)})^\beta
\geq 1 + \theta - (1 + \beta) \theta \beta. \tag{3.28}
\]

In view of (2.4), \(\psi'(\beta)(t) = \sigma t + (1 + \beta) \theta t^\theta - (1 + \theta).\) This and (3.28) imply that

\[
\frac{1}{1 + \eta(\alpha^\beta - 1)} \geq -\psi'(\beta)(t) + \sigma t. \tag{3.29}
\]

Noting that \(\sigma = \gamma (1 + \eta^{1/(1+\beta)})/((1 + \alpha \gamma \eta (1 + \eta))(1 + \eta(\alpha^\beta - 1)))\), we use (3.28) and (3.27) to get that

\[
\sigma \geq \frac{\gamma(1 + \eta^{1/(1+\beta)})(-\psi'(\beta)(t) + \sigma t)}{1 + \gamma \eta^{1/(1+\beta)} t} = \frac{\gamma(1 + \eta^{1/(1+\beta)})(-\psi'(\beta)(t) + \sigma t)}{1 - \gamma t + \gamma (1 + \eta^{1/(1+\beta)} t)}, \tag{3.30}
\]

which is equivalent to

\[
\sigma (1 - \gamma t) \geq -\psi'(\beta)(t)(1 + \eta^{1/(1+\beta)}).
\]
Since \(-\psi'_\beta(t) \geq -\psi'_\beta(t) \geq -\psi'_\beta(r_x) = 0\), one sees that (3.25) is proved and the claim stands. In particular, (3.25) implies that \(\sigma(1 - \gamma t_m) \geq -\psi'_\beta(t_m) \gamma(1 + \eta^{1/(1+\beta)})\) and so

\[
\frac{\gamma(1 + \eta^{1/(1+\beta)})}{1 - \gamma t_m} \leq \frac{\sigma}{-\psi'_\beta(t_m)}.
\]
(3.31)

because \(t_m \in (t_1, r_x)\) and \(-\psi'_\beta(t_m) > 0\). Consequently, in view of the definitions of \(\sigma\) and \(\theta\),

\[
\frac{\eta(1 + \eta^{1/(1+\beta)}) - \beta}{1 - \gamma t_m} \leq \frac{\eta(1 + \eta^{1/(1+\beta)}) - \beta}{-\psi'_\beta(t_m) \gamma(1 + \eta^{1/(1+\beta)})} = \frac{\eta(1 + \eta^{1/(1+\beta)}) - \beta}{-\psi'_\beta(t_m) (1 + \alpha \gamma \eta (1 + \eta)(1 + \eta(\alpha^\beta - 1))} \leq \frac{\theta}{-\psi'_\beta(t_m)}.
\]
(3.32)

This together with (3.31) and (3.24) implies

\[
\frac{1 + \eta^{1/(1+\beta)}}{1 - \gamma t_m} \left\| F'(x_0)^{-1} F(x_m) \right\| \leq \frac{\sigma(t_m - t_{m-1})^2}{-2\psi'_\beta(t_m)} + \frac{\theta(t_m - t_{m-1})^{1+\beta}}{-\psi'_\beta(t_m)}.
\]
(3.33)

Noting the following well-known inequality

\[
t^{1+\beta} + (1 + \beta)t \leq 2^{1-\beta}(1 + t)^{1+\beta} - 1 \quad \text{for each } t \geq 0,
\]
we have

\[
\left(\frac{t_m - t_{m-1}}{t_{m-1}} \right)^{1+\beta} + (1 + \beta) \frac{t_m - t_{m-1}}{t_{m-1}} \leq 2^{1-\beta} \left(\left(1 + \frac{t_m - t_{m-1}}{t_{m-1}} \right)^{1+\beta} - 1 \right).
\]
(3.34)

It follows that

\[
t_m - t_{m-1} \leq 2^{1-\beta} t_{m-1}^{1+\beta} - 2^{1-\beta} t_{m-1}^{1+\beta} - (1 + \beta)t_{m-1} (t_m - t_{m-1}).
\]
(3.35)

Combining this with (3.33), one has that

\[
\frac{1 + \eta^{1/(1+\beta)}}{1 - \gamma t_m} \left\| F'(x_0)^{-1} F(x_m) \right\| \leq \frac{1}{\psi'_\beta(t_m)} \left(\frac{\sigma}{2(t_m - t_{m-1})^2} + 2^{1-\beta} \alpha t_{m-1}^{1+\beta} - 2^{1-\beta} \alpha t_{m-1}^{1+\beta} - (1 + \beta)\theta t_{m-1} (t_m - t_{m-1}) \right) = \frac{\psi'_\beta(t_m - t_{m-1}) - \psi'_\beta(t_{m-1})(t_m - t_{m-1})}{\psi'_\beta(t_m)} = t_{m+1} - t_m.
\]
(3.36)

and hence (3.10) holds for \(n = m\). To verify (3.11) for \(n = m\), we take \(t = t^*\) in (3.25) to get

\[
\sigma(1 - \gamma t^*) \geq -\psi'_\beta(t^*) \gamma(1 + \eta^{1/(1+\beta)}) \geq -\psi'_\beta(r_x) \gamma(1 + \eta^{1/(1+\beta)}) = 0,
\]
(3.37)

which implies \(t^* \leq \frac{1}{\gamma}\). Thus, by (3.20), Lemma 3.1 is applicable to concluding that \(F'(x_m)^{-1}\) exists and

\[
\left\| F'(x_m)^{-1} F(x_0) \right\| \leq \frac{1}{1 - \gamma t_m} \left\| F'(x_0)^{-1} F(x_0) \right\| \leq \frac{1}{1 - \gamma t_m}.
\]
(3.38)

Then by (3.13), we conclude that

\[
\left\| x_{m+1} - x_m \right\| \leq \left\| F'(x_0)^{-1} F(x_0) \right\| \left(\left\| F'(x_0)^{-1} F(x_m) \right\| + \left\| F'(x_0)^{-1} r_m \right\| \right) \leq \frac{1}{1 - \gamma t_m} \left(\left\| F'(x_0)^{-1} F(x_m) \right\| + \eta \left\| F'(x_0)^{-1} F(x_m) \right\|^{1+\beta} \right).
\]
(3.39)

We assert that

\[
\eta \left\| F'(x_0)^{-1} F(x_m) \right\|^{1+\beta} \leq \eta^{1/(1+\beta)} \left\| F'(x_0)^{-1} F(x_m) \right\|.
\]
(3.40)
Corollary 3.1. Thus, Theorem 3.1 reduces to Kantorovich’s theorem.

Corollary 3.2. The criterion is given in the following corollary.

Proof. By Theorem 3.1, it suffices to prove that (3.40) holds. Hence

\[
\|x_{m+1} - x_m\| \leq \frac{1 + n^{(1+\beta)}}{1 - \gamma t_m} \|F'(x_0)^{-1}F(x_m)\| \leq t_m + t_m.
\] (3.41)

thanks to (3.10) proved just for \(n = m \). Therefore, (3.11) holds for \(n = m \) and the proof is complete. \(\square \)

In particular, in the case when \(\eta_0 \equiv 0 \), Algorithm A[\(r_n; x_0 \)] reduces to Newton’s method, and furthermore one has \(\sigma = \gamma \), \(\theta = 0 \), \(\lambda = \alpha \). Thus \(r_n = \frac{1}{2} \). In this case the sequence \(\{t_n\} \) defined by (2.11) reduce to Newton’s sequence with initial point \(t_0 = 0 \). Hence, by a well-known result, see for example [9,13,20] and [21], we have that

\[
\hat{t}_n^* - t_n = \frac{\xi^{2^{n-1}}}{\sum_{j=0}^{2^{n-1}} \xi^j} \hat{t}_n^* \text{ for each } n \in \mathbb{N},
\] (3.42)

where

\[
\hat{t}_n^* = 1 - \frac{\sqrt{1 - 2\alpha \gamma}}{\gamma} \text{ and } \xi = 1 - \frac{\sqrt{1 - 2\alpha \gamma}}{1 + \sqrt{1 - 2\alpha \gamma}}.
\] (3.43)

Thus, Theorem 3.1 reduces to Kantorovich’s theorem.

Corollary 3.1. Let \(\eta_0 \equiv 0 \) for each \(n \geq 0 \). Suppose that \(F'(x_0)^{-1}F' \) satisfies the Lipschitz condition (3.1) with \(r = (1 - \sqrt{1 - 2\alpha \gamma})/\gamma \) and that

\[
0 < \alpha \gamma \leq \frac{1}{2}.
\]

Then Newton’s sequence \(\{x_n\} \) converges to a solution \(x^* \) of (1.1) satisfying

\[
\|x_n - x^*\| \leq \frac{\xi^{2^{n-1}}}{\sum_{j=0}^{2^{n-1}} \xi^j} \hat{t}_n^*,
\]

where \(\xi \) and \(\hat{t}_n^* \) are defined by (3.43).

Note that the convergence criterion given in Theorem 3.1 is implicit in the case when \(\beta > 0 \). An explicit convergence criterion is given in the following corollary.

Corollary 3.2. Suppose that \(\beta > 0 \) and that \(F'(x_0)^{-1}F' \) satisfies the Lipschitz condition (3.1) on \(B(x_0, t^*) \). Suppose also that

\[
\alpha \leq \min \left\{ \frac{2^{-1/\beta}}{\mu^{1/\beta}v^{1+1/\beta}} - \frac{2^{-1/\beta}}{\mu^{1+1/\beta}v^{2+1/\beta}} - \frac{2^{-2/\beta}}{\mu^{2\beta}v^{2\beta-1}}, \quad \eta^{-1/(1+\beta)} \right\}.
\] (3.44)

where \(\mu = \gamma + (1 + \beta) \eta \) and \(v = 1 + n^{1/(1+\beta)} \). Let \(\{x_n\} \) be the sequence generated by Algorithm A[\(r_n; x_0 \)]. Then \(\{x_n\} \) converges to a solution \(x^* \) of (1.1) and the following assertion holds:

\[
\|x_n - x^*\| \leq t^* - t_n \text{ for each } n \in \mathbb{N}.
\]

Proof. By Theorem 3.1, it suffices to prove that (3.44) implies (3.6) in the case when \(\beta > 0 \). To do this, we suppose that (3.44) holds. Then
Noting that $\beta > 0$ and $\nu = 1 + \eta^{1/(1+\beta)}$, one has by the definitions of σ, θ, and λ (cf. (3.4) and (3.5)) that
\[(1 + \eta(\alpha^{\beta} - 1))\sigma = \frac{\gamma^\nu}{(1 + \alpha^\nu \eta(1 + \eta))}, \]
\[(1 + \eta(\alpha^{\beta} - 1))\theta = \eta, \]
\[(1 + \eta(\alpha^{\beta} - 1))(1 + \theta) = 1 + \eta\alpha^{\beta} \]
and
\[(1 + \eta(\alpha^{\beta} - 1))\lambda = (1 + \eta\alpha^{\beta})\nu\alpha. \]
Substituting these into φ_β defined by (2.2), we get that, for each $t > 0$,
\[(1 + \eta(\alpha^{\beta} - 1))\varphi_\beta(t) = \frac{\gamma^\nu}{(1 + \alpha^\nu \eta(1 + \eta))} \left(\frac{t^2 + \eta^2 - (1 + \eta\alpha^{\beta})t + (1 + \eta\alpha^{\beta})\nu\alpha}{2} \right)^{1+\beta} \]
Consequently,
\[(1 + \eta(\alpha^{\beta} - 1))\varphi_\beta (2^{1-\beta/\nu}\mu^{-1/\nu}v^{-1/\nu}) \]
\[= \frac{\gamma^\nu}{(1 + \alpha^\nu \eta(1 + \eta))} \left(\frac{(2^{1-\beta/\nu}\mu^{-1/\nu}v^{-1/\nu})^2}{2} \right)^{1+\beta} + \eta^2 - (1 + \eta\alpha^{\beta})t + (1 + \eta\alpha^{\beta})\nu\alpha, \]
\[= \frac{\mu^{2\beta/\nu} \gamma^\nu}{(1 + \alpha^\nu \eta(1 + \eta))} \left(\frac{2^{1-\beta/\nu}\mu^{-1/\nu}v^{-1/\nu}}{2} \right)^{1+\beta} + \frac{\gamma^\nu}{(1 + \alpha^\nu \eta(1 + \eta))} \left(\frac{2^{1-\beta/\nu}\mu^{-1/\nu}v^{-1/\nu}}{2} \right)^{1+\beta} + (1 + \eta\alpha^{\beta})\nu\alpha. \]
This together with (3.45) implies that $\varphi_\beta (2^{1-\beta/\nu}\mu^{-1/\nu}v^{-1/\nu}) \leq 0$. By the definition of r_\ast, r_\ast is the minimizer of φ_β on $(0, +\infty)$. It follows that $\varphi_\beta (r_\ast) \leq \varphi_\beta (2^{1-\beta/\nu}\mu^{-1/\nu}v^{-1/\nu}) \leq 0$ and so $\lambda \leq b$ by (2.8), that is,
\[\alpha \leq \frac{\sigma^2 + 2\beta^2 r_\ast^2}{2(1 + \theta)(1 + \eta^{1/(1+\beta)})}. \]
The proof is complete. \square

Below we consider the special case when $\beta = 1$. Then,
\[\sigma = \frac{\gamma^\nu}{(1 + \alpha^\nu \eta(1 + \eta))} \left(\frac{1 + \eta(\alpha - 1)}{1 + \eta(\alpha - 1)} \right), \quad \theta = \frac{\eta}{1 + \eta(\alpha - 1)} \]
and
\[\lambda = \frac{\alpha(1 + \sqrt{\eta})(1 + \alpha^\nu \eta)}{1 + \eta(\alpha - 1)}. \]
Note that in this case the sequence (t_n) defined by (2.11) also reduces to Newton’s sequence with initial point $t_0 = 0$. Hence, as have noted in Corollary 3.1, we have that
\[t^* - t_n = \frac{\xi^{2n-1}}{\sum_{j=0}^{2n-1} \xi^j} t^* \quad \text{for each } n \in \mathbb{N}, \]
where
\[t^* = 1 + \theta - \frac{(1 + \theta)^2 - 2(\sigma + 2\theta)\lambda}{\sigma + 2\theta} \quad \text{and} \quad \xi = 1 + \frac{1 + \theta - \sqrt{(1 + \theta)^2 - 2(\sigma + 2\theta)\lambda}}{1 + \theta + \sqrt{(1 + \theta)^2 - 2(\sigma + 2\theta)\lambda}}. \]
We have the following corollary, which gives an explicit criterion sharper than the corresponding one in Corollary 3.2, and an explicit estimate for the error $\|x_n - x^\ast\|$.

Corollary 3.3. Suppose that $\beta = 1$ and that $F'(x_0)^{-1}F'$ satisfies the Lipschitz condition (3.1) with $r = \hat{r}^*$. Suppose also that
\[\alpha \leq \min \left\{ \frac{1}{2\gamma^\nu(1 + \sqrt{\eta})^2 + 4\eta(1 + \sqrt{\eta}) - \eta^\nu \gamma^\nu \sqrt{\eta}} \right\}. \]
Then the sequence (x_n) generated by Algorithm $\mathcal{A}[r_\ast; x_0]$ converges to a solution x^\ast of (1.1) satisfying
\[\|x_n - x^\ast\| \leq \frac{\xi^{2n-1}}{\sum_{j=0}^{2n-1} \xi^j} t^* \quad \text{for each } n \in \mathbb{N}. \]
where t^* and ξ are defined by (3.49).
Therefore, noting that $\alpha > \beta$, we have the following convergence criterion for the inexact Newton method under the Hölder condition:

$$
\alpha \lesssim \min \left\{ \frac{1 + \alpha \eta}{2 \gamma (1 + \sqrt{\eta})^2 / (1 + \alpha \gamma \eta (1 + \eta)) + 4 \eta (1 + \sqrt{\eta})}, \frac{1}{\sqrt{\eta}} \right\}.
$$

(3.52)

On the other hand, (3.50) is equivalent to

$$
\alpha \lesssim \min \left\{ \frac{1 + \alpha \eta}{2 \gamma (1 + \sqrt{\eta})^2 + 4 \eta (1 + \sqrt{\eta})}, \frac{1}{\sqrt{\eta}} \right\}.
$$

(3.53)

Since $\alpha > 0$, (3.53) implies criterion (3.52); hence (3.6) holds. This completes the proof by Theorem 3.1 and (3.48).

4. Concluding remarks

By using a majorizing function technique, we have established in the previous section a general convergence criterion for the inexact Newton method with the controls given by (19). Our approach is different from that employed by Argyros in [1], where the Lipschitz continuity assumption on the second Fréchet derivative is assumed. The remainder of this section is devoted to some comparisons of our results with some known results reported in [10] and [15].

For the special case when $\beta = 0$, Guo established in [10, Theorem 2.6] the following convergence criterion:

$$
\alpha \gamma \leq \frac{(4 \eta + 5)^2 - 2 \eta^2 - 14 \eta - 11}{(1 + \eta)(1 - \eta)^2}.
$$

(4.1)

By Theorem 3.1 of the present paper, we have the following convergence criterion for $\beta = 0$:

$$
\alpha \gamma \leq \frac{(1 - \eta)^2}{(1 + \eta)(2(1 + \eta) - \eta(1 - \eta)^2)}.
$$

(4.2)

Define the functions g_1 and g_2 respectively by

$$
g_1(\eta) = \frac{(4 \eta + 5)^2 - 2 \eta^2 - 14 \eta - 11}{(1 + \eta)(1 - \eta)^2} \text{ for each } \eta \in [0, 1),
$$

and

$$
g_2(\eta) = \frac{(1 - \eta)^2}{(1 + \eta)(2(1 + \eta) - \eta(1 - \eta)^2)} \text{ for each } \eta \in [0, 1].
$$

Then (4.1) and (4.2) are respectively equivalent to

$$
\alpha \gamma \leq g_1(\eta) \quad \text{and} \quad \alpha \gamma \leq g_2(\eta).
$$

The graphs of the functions g_1 and g_2 are illustrated in Fig. 1, from which one can see that the criterion (4.2) is sharper than (4.1) for $\eta \in [0, \eta_0)$ while for $\eta \in (\eta_0, 1)$ the criterion (4.1) is a little better than (4.2) but the difference is much smaller, where $\eta_0 = 0.5267 \ldots$ is the solution of the equation $g_1(\eta) = g_2(\eta)$ in $[0, 1]$.

For the case when $\beta > 0$, the authors of the present paper have established in [15] the following explicit convergence criterion for the inexact Newton method under the (L, p)-Hölder condition:

$$
\alpha \leq \begin{cases}
\beta & \text{if } 0 < \beta < 1, \\
\frac{1}{2(\gamma + 2 \eta)(1 + \sqrt{\eta})^2} \cdot \frac{1}{\sqrt{\eta}} & \text{if } \beta = 1.
\end{cases}
$$

(4.3)

Consider the special case when $\beta = 1$. Since

$$
\frac{1}{2 \gamma (1 + \sqrt{\eta})^2 + 4 \eta (1 + \sqrt{\eta}) - \eta} \geq \frac{1}{2 \gamma (1 + \sqrt{\eta})^2 + 4 \eta (1 + \sqrt{\eta})^2} = \frac{1}{2 \gamma (2 \eta + 2 \eta)(1 + \sqrt{\eta})^2},
$$

it follows that the convergence criterion (3.50) in Corollary 3.3 is sharper than that given in (4.3).

Now consider the case when $0 < \beta < 1$. We assert that our convergence criterion (3.44) obtained in Corollary 3.2 is sharper than the one in (4.3) in the case when $\gamma \geq 1$. To show this, suppose that (4.3) holds and that $\gamma \geq 1$. Recall that $\mu = \gamma + (1 + \beta) \eta$ and $\nu = 1 + \eta^{1/(1+\beta)}$. Then $\mu, \nu \geq 1$. Thus, thanks to the fact that $1 + \beta \leq 2^{1/\beta}$, one has
The graphs of \(g_1(\eta) \) and \(g_2(\eta) \) are shown in Fig. 1.

\[
1 - \left(\frac{1 + \beta}{\mu} \right) \eta - \left(\frac{1 + \beta}{\gamma} \right) \mu = \frac{\gamma}{2^{1/\beta} \mu^{1/\beta}} - \left(\frac{1 + \beta}{\gamma} \right) \mu \geq 0,
\]

which is equivalent to

\[
1 - \frac{\eta}{\mu} - \frac{\gamma}{2^{1/\beta} \mu^{1/\beta}} \geq \frac{\beta}{1 + \beta}.
\]

Thus (4.3) gives

\[
\alpha \leq \frac{\beta 2^{1-1/\beta}}{(1 + \beta) \mu^{1/\beta} \nu^{1+1/\beta}} \leq \frac{2^{1-1/\beta}}{\mu^{1/\beta} \nu^{1+1/\beta}} \left(1 - \frac{\eta}{\mu} - \frac{\gamma}{2^{1/\beta} \mu^{1/\beta}} \right) = \frac{2^{1-1/\beta}}{\mu^{1/\beta} \nu^{1+1/\beta}} - \frac{2^{1-2/\beta}}{\mu^{2/\beta} \nu^{2/\beta}}.
\]

Hence

\[
\alpha \leq \frac{2^{1-1/\beta}}{\mu^{1/\beta} \nu^{1+1/\beta}} - \frac{2^{1-1/\beta}}{\mu^{1+1/\beta} \nu^{1+1/\beta}} - \frac{2^{1-2/\beta}}{\mu^{2/\beta} \nu^{2/\beta}}.
\]

This shows that (3.44) is sharper than the one in (4.3) when \(\gamma \geq 1 \).

We end this paper with an example for which Theorem 3.1 (with \(\beta = 0 \)) is applicable but not [10, Theorem 2.6].

Example 4.1. Let \(\mathbb{R}^2 \) be endowed with the \(l_2 \)-norm. Let \(x_0 = (\xi_1^0, \xi_2^0)^T = (0.95, 0.96)^T \). Define \(F : \mathbb{R}^2 \to \mathbb{R}^2 \) by

\[
F(x) := \left(\frac{1}{2} \xi_1 - \frac{1}{2} \xi_2, \frac{1}{2} \xi_1 - \frac{23}{50} \right)^T \quad \text{for each} \quad x = (\xi_1, \xi_2)^T \in \mathbb{R}^2.
\]

Then

\[
F'(x) = \begin{pmatrix} \xi_1 - \xi_2 \\ \frac{1}{2} \end{pmatrix} \quad \text{for each} \quad x = (\xi_1, \xi_2)^T \in \mathbb{R}^2
\]

and

\[
F'(x) - F'(y) = \begin{pmatrix} \xi_1 - \xi_1 & \xi_2 - \xi_2 \\ 0 & 0 \end{pmatrix} \quad \text{for each} \quad x = (\xi_1, \xi_2)^T, y = (\zeta_1, \zeta_2)^T \in \mathbb{R}^2.
\]

Thus, one has that

\[
\left\| F'(x_0)^{-1} (F'(x) - F'(y)) \right\|_F \leq \left\| F'(x_0)^{-1} \right\|_F \left\| F'(x) - F'(y) \right\|_F \leq \left\| F'(x_0)^{-1} \right\|_F \sqrt{(\xi_1 - \xi_1)^2 + (\xi_2 - \xi_2)^2} = \left\| F'(x_0)^{-1} \right\|_F \|x - y\|_2.
\]
This means that $F'(x_0)^{-1}F'$ satisfies Lipschitz condition (3.1) with the Lipschitz constant $\gamma = \|F'(x_0)^{-1}F\|_2$. Noting that

$$\alpha = \|F'(x_0)^{-1}F(x_0)\|_{F} = 0.149144421\ldots$$

On the other hand, taking $\eta = 0.15$, one has

$$\frac{(1 - 2\eta)^2}{(1 + \eta)(2(1 + \eta) - \eta(1 - 2\eta)^2)} = 0.191370741\ldots > \alpha \gamma$$

and

$$\frac{\sqrt{(4\eta + 5)^2} - 2\eta^2 - 14\eta - 11}{(1 + \eta)(1 - \eta)^2} = 0.128802424\ldots < \alpha \gamma.$$

Thus, Theorem 3.1 (with $\beta = 0$) is applicable but not [10, Theorem 2.6].

References

