Small Ramsey Numbers

Stanisław P. Radziszowski
Department of Computer Science
Rochester Institute of Technology
Rochester, NY 14623, spr@cs.rit.edu
http://www.cs.rit.edu/~spr

Submitted: June 11, 1994; Accepted: July 3, 1994
Revision #12: August 4, 2009

ABSTRACT: We present data which, to the best of our knowledge, includes all known nontrivial values and bounds for specific graph, hypergraph and multicolor Ramsey numbers, where the avoided graphs are complete or complete without one edge. Many results pertaining to other more studied cases are also presented. We give references to all cited bounds and values, as well as to previous similar compilations. We do not attempt complete coverage of asymptotic behavior of Ramsey numbers, but concentrate on their specific values.

Mathematical Reviews Subject Number 05C55.

Revisions

1993, February preliminary version, RIT-TR-93-009 [Ra2]
1994, July 3 accepted to the EIJC, posted on the web
1994, November 7 EIJC revision #1
1995, August 28 EIJC revision #2
1996, March 25 EIJC revision #3
1997, July 11 EIJC revision #4
1998, July 9 EIJC revision #5
1999, July 5 EIJC revision #6
2000, July 25 EIJC revision #7
2001, July 12 EIJC revision #8
2002, July 15 EIJC revision #9
2004, July 4 EIJC revision #10
2006, August 1 EIJC revision #11
2009, August 4 EIJC revision #12
Table of Contents

1. **Scope and Notation** 3

2. **Classical Two Color Ramsey Numbers** 4
 2.1 Bounds on $R(k, l)$ for $k \leq 10, l \leq 15$ 4
 2.2 Bounds on $R(k, l)$ for $l \geq 15$ 6
 2.3 Other results on $R(k, l)$ 7

3. **Two Colors - Most Studied Cases** 9
 3.1 Dropping one edge from complete graph 9
 3.2 Complete bipartite graphs 11
 3.3 Cycles, cycles versus complete graphs 14
 3.4 Cycles versus wheels 16
 3.5 Cycles versus books 17

4. **General Graph Numbers in Two Colors** 18
 4.1 Paths 18
 4.2 Wheels 18
 4.3 Books 19
 4.4 Trees and forests 19
 4.5 Stars, stars versus other graphs 20
 4.6 Fans, fans versus other graphs 21
 4.7 Paths versus other graphs 21
 4.8 Triangle versus other graphs 21
 4.9 Cycles versus other graphs 22
 4.10 Wheels versus other graphs 23
 4.11 Books versus other graphs 23
 4.12 Trees and forests versus other graphs 24
 4.13 Cases for $n(G), n(H) \leq 5$ 24
 4.14 Mixed cases 25
 4.15 Multiple copies of graphs, disconnected graphs 26
 4.16 General results for sparse graphs 26
 4.17 Other general two color results 27

5. **Multicolor Ramsey Numbers** 29
 5.1 Bounds for classical numbers 29
 5.2 General results for complete graphs 31
 5.3 Cycles 32
 5.4 Paths, paths versus other graphs 35
 5.5 Special cases 36
 5.6 Other general results 36

6. **Hypergraph Numbers** 38

7. **Cumulative Data and Surveys** 40
 7.1 Cumulative data for two colors 40
 7.2 Cumulative data for three colors 41
 7.3 Surveys 41

8. **Concluding Remarks** 42

References 44-72
1. Scope and Notation

There is vast literature on Ramsey type problems starting in 1930 with the original paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an exciting development of Ramsey Theory. The subject has grown amazingly, in particular with regard to asymptotic bounds for various types of Ramsey numbers (see the survey papers [GrRö, Neš, ChGra2]), but the progress on evaluating the basic numbers themselves has been unsatisfactory for a long time. In the last three decades, however, considerable progress has been obtained in this area, mostly by employing computer algorithms. The few known exact values and several bounds for different numbers are scattered among many technical papers. This compilation is a fast source of references for the best results known for specific numbers. It is not supposed to serve as a source of definitions or theorems, but these can be easily accessed via the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some smaller given objects. The role of Ramsey numbers is to quantify some of the general existential theorems in Ramsey Theory.

Let G_1, G_2, \ldots, G_m be graphs or s-uniform hypergraphs (s is the number of vertices in each edge). $R(G_1, G_2, \ldots, G_m ; s)$ denotes the m-color Ramsey number for s-uniform graphs/hypergraphs, avoiding G_i in color i for $1 \leq i \leq m$. It is defined as the least integer n such that, in any coloring with m colors of the s-subsets of a set of n elements, for some i the s-subsets of color i contain a sub-(hyper)graph isomorphic to G_i (not necessarily induced). The value of $R(G_1, G_2, \ldots, G_m ; s)$ is fixed under permutations of the first m arguments. If $s = 2$ (standard graphs) then s can be omitted. If G_i is a complete graph K_k, then we can write k instead of G_i, and if $G_i = G$ for all i we can use the abbreviation $R_m(G; s)$ or $R_m(G)$. For $s = 2$, K_{k-1} denotes a K_k without one edge, and for $s = 3$, K_{k-1} denotes a K_k without one triangle (hyperedge).

The graph nG is formed by n disjoint copies of G, and the join $G+H$ of vertex disjoint graphs G and H. P_i is a path on i vertices, C_i is a cycle of length i, and W_i is a wheel with $i-1$ spokes, i.e. a graph formed by some vertex x, connected to all vertices of some cycle C_{i-1} (thus $W_i = K_1 + C_{i-1}$). $K_{n,m}$ is a complete n by m bipartite graph, in particular $K_{1,n}$ is a star graph. The book graph $B_i = K_2 + K_1 + K_{1,i}$ has $i+2$ vertices, and can be seen as i triangular pages attached to a single edge. The fan graph F_n is defined by $F_n = K_1 + nK_2$. For a graph G, $n(G)$ and $e(G)$ denote the number of vertices and edges, respectively, and $\delta(G)$ and $\Delta(G)$ minimum and maximum degree in G. Finally, let $\chi(G)$ be the chromatic number of G. In general we follow the notation used by West [West].

Section 2 contains the data for the classical two color Ramsey numbers $R(k, l)$ for complete graphs, and section 3 for the most studied two color cases. Section 4 lists other often studied two color cases for general graphs. The multicolor and hypergraph cases are gathered in sections 5 and 6, respectively. Finally, section 7 gives pointers to cumulative data and to the other surveys.
2. Classical Two Color Ramsey Numbers

2.1. Upper and lower bounds on $R(k, l)$

<table>
<thead>
<tr>
<th>k</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>36</td>
<td>40</td>
<td>46</td>
<td>52</td>
<td>59</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>25</td>
<td>35</td>
<td>41</td>
<td>49</td>
<td>56</td>
<td>61</td>
<td>64</td>
<td>73</td>
<td>92</td>
<td>97</td>
<td>128</td>
<td>133</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>58</td>
<td>80</td>
<td>87</td>
<td>143</td>
<td>143</td>
<td>216</td>
<td>216</td>
<td>216</td>
<td>216</td>
<td>316</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>113</td>
<td>130</td>
<td>149</td>
<td>199</td>
<td>199</td>
<td>282</td>
<td>317</td>
<td>3583</td>
<td>6090</td>
<td>10630</td>
<td>16944</td>
<td>63620</td>
</tr>
<tr>
<td>7</td>
<td>205</td>
<td>540</td>
<td>1031</td>
<td>1713</td>
<td>2826</td>
<td>2826</td>
<td>6588</td>
<td>580</td>
<td>12677</td>
<td>22325</td>
<td>39025</td>
<td>64871</td>
<td>89203</td>
</tr>
<tr>
<td>8</td>
<td>282</td>
<td>1870</td>
<td>317</td>
<td>3583</td>
<td>6090</td>
<td>10630</td>
<td>16944</td>
<td>817</td>
<td>27490</td>
<td>41525</td>
<td>861</td>
<td>63620</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>565</td>
<td>6588</td>
<td>580</td>
<td>12677</td>
<td>22325</td>
<td>39025</td>
<td>64871</td>
<td>89203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>798</td>
<td>23556</td>
<td>81200</td>
<td>1265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table I. Known nontrivial values and bounds for two color Ramsey numbers $R(k, l) = R(k, l ; 2)$.

<table>
<thead>
<tr>
<th>k</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GG</td>
<td>GG</td>
<td>Géry</td>
<td>Ka2 GR</td>
<td>GR</td>
<td>Ka2 GR</td>
<td>Ex5</td>
<td>Ex5</td>
<td>Ka2</td>
<td>Ex5</td>
<td>Ka2</td>
<td>Ex5</td>
</tr>
<tr>
<td>4</td>
<td>GG</td>
<td>Ex9 MR4</td>
<td>Ex3 Mac</td>
<td>Ex15 Mac</td>
<td>Ex17 HaKr Mac</td>
<td>HaKr Mac</td>
<td>2.3.e HaKr Spe3</td>
<td>SLL Spe3</td>
<td>XXR Spe3</td>
<td>XXR Spe3</td>
<td>XXR Spe3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ex4 MR5</td>
<td>CET Spec3</td>
<td>HaKr Spec3</td>
<td>Ex17 HaKr Mac</td>
<td>Ex17 Mac</td>
<td>Ex17 Mac</td>
<td>Ex17 HW+</td>
<td>Ex17 HW+</td>
<td>Ex17 HW+</td>
<td>Ex17 HW+</td>
<td>Ex17 HW+</td>
<td>Ex17 HW+</td>
</tr>
<tr>
<td>6</td>
<td>Ka1 Mac</td>
<td>Ex17 Mac</td>
<td>XXER Mac</td>
<td>Ex17 XXER Mac</td>
<td>XXER XXER Mac</td>
</tr>
<tr>
<td>7</td>
<td>She1 Mac</td>
<td>2.3.e She1 Mac</td>
<td>XSR2 Mac</td>
<td>XSR2 XSR2 Mac</td>
</tr>
<tr>
<td>8</td>
<td>BR Mac</td>
<td>XXER Mac</td>
<td>She1 Mac</td>
<td>She1 She1 Mac</td>
</tr>
<tr>
<td>9</td>
<td>She1 ShiZ1</td>
<td>2.3.e She1 ShiZ1</td>
</tr>
<tr>
<td>10</td>
<td>She1 Shi2</td>
<td>2.3.h She1 Shi2</td>
</tr>
</tbody>
</table>

References for Table I. HW+ abbreviates HWSYZH.
We split the data into the table of values and a table with corresponding references. In Table I, known exact values appear as centered entries, lower bounds as top entries, and upper bounds as bottom entries. For some of the exact values two references are given when the lower and upper bound credits are different.

The task of proving \(R(3, 3) \leq 6 \) was the second problem in Part I of the William Lowell Putnam Mathematical Competition held in March 1953 [Bush]. Greenwood and Gleason [GG] in 1955 established the initial values \(R(3, 4) = 9, R(3, 5) = 14 \) and \(R(4, 4) = 18 \). Kéry [Kéry] in 1964 found \(R(3, 6) = 18 \), but only recently an elementary and self-contained proof of this result appeared in English [Car].

All the critical graphs for the numbers \(R(k, l) \) (graphs on \(R(k, l) - 1 \) vertices without \(K_k \) and without \(K_l \) in the complement) are known for \(k = 3 \) and \(l = 3, 4, 5 \) [Kéry], 6 [Ka2], 7 [RK3, MZ], and there are 1, 3, 1, 7 and 191 of them, respectively. All \((3, k)\)-graphs, for \(k \leq 6 \), were enumerated in [RK3], and all \((4, 4)\)-graphs in [MR2]. There exists a unique critical graph for \(R(4, 4) \) [Ka2]. There are 430215 such graphs known for \(R(3, 8) \) [McK], 1 for \(R(3, 9) \) [Ka2] and 350904 for \(R(4, 5) \) [MR4], but there might be more of them. In [MR5] evidence is given for the conjecture that \(R(5, 5) = 43 \) and that there exist 656 critical graphs on 42 vertices. The graphs constructed by Exoo in [Ex9, Ex12, Ex13, Ex14, Ex15, Ex16, Ex17], and some others, are available electronically from http://ginger.indstate.edu/ge/RAMSEY.

The construction by Mathon [Mat] and Shearer [She1] (see also sections 2.3.i, 5.2.h and 5.2.i), using data obtained by Shearer [She3] for primes up to 7000, gives the following lower bounds for higher diagonal numbers: \(R(11, 11) \geq 1597, R(13, 13) \geq 2557, R(14, 14) \geq 2989, R(15, 15) \geq 5485, \) and \(R(16, 16) \geq 5605 \). Similarly, \(R(17, 17) \geq 8917, R(18, 18) \geq 11005 \) and \(R(19, 19) \geq 17885 \) were obtained in [LSL], though the first two of these bounds follow also from the data in [She3]. The same approach does not improve on an easy bound \(R(12, 12) \geq 1637 \) [XXR], which can be obtained by applying twice 2.3.e. Only some of the higher bounds implied by 2.3.* are shown, and more similar bounds could be easily derived.

In general, we show bounds beyond the contiguous small values if they improve on results previously reported in this survey or published elsewhere. Some easy upper bounds implied by 2.3.a are marked as [Ea1].

Cyclic (or circular) graphs are often used for Ramsey graph constructions. Several cyclic graphs establishing lower bounds were given in the Ph.D. dissertation by J.G. Kalbfleisch in 1966, and many others were published in the next few decades (see [RK1]). Only recently Harborth and Krause [HaKr] presented all best lower bounds up to 102 from cyclic graphs avoiding complete graphs. In particular, no lower bound in Table I can be improved with a cyclic graph on less than 102 vertices. See also item 2.3.k and section 4.16 [HaKr].

The claim that \(R(5, 5) = 50 \) posted on the web [Stone] is in error, and despite being shown to be incorrect more than once, this value is still being cited by some authors. The bound \(R(3, 13) \geq 60 \) [XieZ] cited in the 1995 version of this survey was shown to be incorrect in [Piw1]. Another incorrect construction for \(R(3, 10) \geq 41 \) was described in [DuHu].
There are really only two general upper bound inequalities useful for small parameters, namely \(2.3.a\) and \(2.3.b\). Stronger upper bounds for specific parameters were difficult to obtain, and they often involved massive computations, like those for the cases of \((3,8)\) [MZ], \((4,5)\) [MR4], \((4,6)\) and \((5,5)\) [MR5]. The bound \(R(6,6) \leq 166\), only 1 more than the best known [Mac], is an easy consequence of a theorem in [Walk] \(2.3.b\) and \(R(4,6) = 41\). T. Spencer [Spe3], Mackey [Mac], and Huang and Zhang [HZ1], using the bounds for minimum and maximum number of edges in \((4,5)\) Ramsey graphs listed in [MR3, MR5], were able to establish new upper bounds for several higher Ramsey numbers, improving on all of the previous longstanding results by Giraud [Gi3, Gi5, Gi6].

We have recomputed the upper bounds in Table I marked [HZ1] using the method from the paper [HZ1], because the bounds there relied on an overly optimistic personal communication from T. Spencer. Further refinements of this method are studied in [HZ2, ShZ1, Shi2]. The paper [Shi2] subsumes the main results of the manuscripts [ShZ1, Shi2]. The upper bound marked in Table I [Yang] was obtained by Yang using the method of [HWSYZH] (abbreviated in the table as HW+).

2.2. Bounds on \(R(k, l)\), higher parameters

<table>
<thead>
<tr>
<th>(l)</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>73</td>
<td>79</td>
<td>92</td>
<td>99</td>
<td>106</td>
<td>111</td>
<td>122</td>
<td>131</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>WW</td>
<td>WW</td>
<td>WWY1</td>
<td>Ex17</td>
<td>WWY1</td>
<td>Ex17</td>
<td>WWY1</td>
<td>WSLX2</td>
<td>WSLX2</td>
</tr>
<tr>
<td>3</td>
<td>153</td>
<td>163</td>
<td>182</td>
<td>187</td>
<td>213</td>
<td>234</td>
<td>242</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XXR</td>
<td>Ex17</td>
<td>LSS1</td>
<td>2.3.e</td>
<td>2.3.g</td>
<td>Ex17</td>
<td>SLZL</td>
<td>SL</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>265</td>
<td>289</td>
<td>388</td>
<td>395</td>
<td>407</td>
<td>421</td>
<td>441</td>
<td>485</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>Ex17</td>
<td>2.3.h</td>
<td>XSR2</td>
<td>2.3.e</td>
<td>XSR2</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>401</td>
<td>434</td>
<td>548</td>
<td>614</td>
<td>710</td>
<td>878</td>
<td>1070</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.h</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td>SLLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>711</td>
<td>725</td>
<td>908</td>
<td>1214</td>
<td>1214</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.g</td>
<td>2.3.h</td>
<td>SLLL</td>
<td></td>
<td>SLLL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>861</td>
<td>937</td>
<td>1045</td>
<td>1236</td>
<td>1617</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3.h</td>
<td>ShaXP</td>
<td>2.3.g</td>
<td>2.3.g</td>
<td>2.3.h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II. Known nontrivial lower bounds for higher two color Ramsey numbers \(R(k, l)\), with references.
The upper bounds of $88, 99, 110, 121, 133, 145, 158$ on $R(3,k)$ for $15 \leq k \leq 21$, respectively, were obtained in [Les]. The lower bounds marked [XXR], [XXER], 2.3.e and 2.3.h need not be cyclic. Several of the Cayley colorings from [Ex17] are also non-cyclic. All other lower bounds listed in Table II were obtained by construction of cyclic graphs. The graphs establishing lower bounds marked 2.3.g can be constructed by using appropriately chosen graphs G and H with a common m-vertex induced subgraph, similarly as it was done in several cases in [XXR].

Yu [Yu2] constructed a special class of triangle-free cyclic graphs establishing several lower bounds for $R(3,k)$, for $k \geq 61$. Only one of these bounds, $R(3,61) \geq 479$, cannot be easily improved by the inequality $R(3,4k+1) \geq 6R(3,k+1)−5$ from [CCD] (2.3.c) and data from Tables I and II. Finally, for higher parameters we mention two more cases which improve on bounds listed in earlier revisions: $R(9,17) \geq 1411$ is given in [XXR] and $R(10,15) \geq 1265$ can be obtained by using 2.3.h.

In general, one can except that the lower bounds in Table II are weaker than those in Table I, in the sense that with some work many of them should not be hard to improve, in contrast to the bounds in Table I, especially smaller ones.

2.3. Other results on $R(k,l)$

(a) $R(k,l) \leq R(k−1,l)+R(k,l−1)$, with strict inequality when both terms on the right hand side are even [GG]. There are obvious generalizations of this inequality for avoiding graphs other than complete.

(b) $R(k,k) \leq 4R(k,k−2)+2$ [Walk].

(c) Explicit construction for $R(3,4k+1) \geq 6R(3,k+1)−5$, for all $k \geq 1$ [CCD].

(d) Constructive results on triangle-free graphs in relation to the case of $R(3,k)$ [BBH1, BBH2, Fra1, Fra2, FrLo, Gri, KM1, Loc, RK3, RK4, Stat, Yu1].

(e) Bounds for the difference between consecutive Ramsey numbers, in particular the bound $R(k,l) \geq R(k,l−1)+2k−3$ for $k,l \geq 3$ [BEFS].

(f) By taking a disjoint union of two critical graphs one can easily see that $R(k,p) \geq s$ and $R(k,q) \geq t$ imply $R(k,p+q−1) \geq s+t−1$. Xu and Xie [XX1] improved this construction to yield better general lower bounds, in particular $R(k,p+q−1) \geq s+t+k−3$.

(g) For $2 \leq p \leq q$ and $3 \leq k$, if (k,p)-graph G and (k,q)-graph H have a common induced subgraph on m vertices without $K_{k−1}$, then $R(k,p+q−1) \geq n(G)+n(H)+m$. In particular, this implies the bounds $R(k,p+q−1) \geq R(k,p)+R(k,q)+k−3$ and $R(k,p+q−1) \geq R(k,p)+R(k,q)+p−2$ [XX1, XXR].

(h) $R(2k−1,l) \geq 4R(k,l−1)−3$ for $l \geq 5$ and $k \geq 2$, and in particular for $k=3$ we obtain $R(5,l) \geq 4R(3,l−1)−3$ [XXER].

(i) If the quadratic residues Paley graph Q_p of prime order $p=4t+1$ contains no K_k, then $R(k,k) \geq p+1$ and $R(k+1,k+1) \geq 2p+3$ [She1, Mat]. Data for larger p was obtained in [LSL]. See also 3.1.c, and items 5.2.h and 5.2.i for similar multicolor results.
Study of Ramsey numbers for large disjoint unions of graphs [Bu1, Bu9], in particular
\[R(nK_k, nK_l) = n(k + l - 1) + R(K_{k-1}, K_{l-1}) - 2 \], for \(n \) large enough [Bu8].

\[R(k, l) \geq L(k, l) + 1 \], where \(L(k, l) \) is the maximal order of any cyclic \((k, l)\)-graph.

A compilation of many best cyclic bounds was presented in [HaKr].

The graphs critical for \(R(k, l) \) are \(k - 1 \) vertex connected and \(2k - 4 \) edge connected, for \(k, l \geq 3 \) [BePi].

Two color lower bounds can be obtained by using items 5.2.k, 5.2.l and 5.2.m with \(r = 2 \). Some generalizations of these were obtained in [ZLLS].

In the last six items of this section we only briefly mention some pointers to the literature dealing with asymptotics of Ramsey numbers. This survey was designed mostly for small, finite, and combinatorial results, but still we wish to give the reader some useful and representative references to more traditional papers looking first of all at the infinite.

In a 1995 breakthrough Kim proved that \(R(3, k) = \Theta(k^2 / \log k) \) [Kim].

Explicit triangle-free graphs with independence \(k \) on \(\Omega(k^{3/2}) \) vertices [Alon2, CPR].

Other general and asymptotic results on triangle-free graphs in relation to the case of \(R(3, k) \) [AKS, Alon2, CCD, CPR, Gri, FrLo, Loc, She2].

In 1947, Erdős gave an amazingly simple probabilistic proof that \(R(k, k) \geq c \cdot k^{2k/2} \) [Erd1]. Spencer [Spe1] improved the constant in the last result. More probabilistic asymptotic lower bounds for other Ramsey numbers were obtained in [Spe1, Spe2, AlPu].

Other asymptotic bounds for \(R(k, k) \) can be found, for example, in [Chu3, McS] (lower bound) and [Tho, Con1] (upper bound), and for many other bounds in the general case of \(R(k, l) \) consult [Spe2, GRS, GrRö, Chu4, ChGra2, LiRZ1, AlPu, Kriv].

Explicit construction of a graph with clique and independence \(k \) on \(2^{c \log^2 k / \log \log k} \) vertices by Frankl and Wilson [FraWi]. Further constructions by Chung [Chu3] and Grolmusz [Gro1, Gro2]. Explicit constructions like these are usually weaker than known probabilistic results.
3. Two Colors - Most Studied Cases

3.1. Dropping one edge from complete graph

This section contains known values and nontrivial bounds for the two color case when the avoided graphs are complete or have the form $K_{k}-e$, but not both are complete.

<table>
<thead>
<tr>
<th>G</th>
<th>H</th>
<th>K_3-e</th>
<th>K_4-e</th>
<th>K_5-e</th>
<th>K_6-e</th>
<th>K_7-e</th>
<th>K_8-e</th>
<th>K_9-e</th>
<th>$K_{10}-e$</th>
<th>$K_{11}-e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3-e</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>K_3</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>31</td>
<td>37</td>
<td>42</td>
<td>47</td>
</tr>
<tr>
<td>K_4-e</td>
<td>5</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_4</td>
<td>7</td>
<td>11</td>
<td>19</td>
<td>27</td>
<td>36</td>
<td>37</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_5-e</td>
<td>7</td>
<td>13</td>
<td>22</td>
<td>31</td>
<td>39</td>
<td>40</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_5</td>
<td>9</td>
<td>16</td>
<td>30</td>
<td>43</td>
<td>67</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_6-e</td>
<td>9</td>
<td>17</td>
<td>31</td>
<td>45</td>
<td>70</td>
<td>59</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_6</td>
<td>11</td>
<td>21</td>
<td>37</td>
<td>55</td>
<td>116</td>
<td>205</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_7-e</td>
<td>11</td>
<td>28</td>
<td>40</td>
<td>66</td>
<td>59</td>
<td>135</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_7</td>
<td>13</td>
<td>28</td>
<td>51</td>
<td>88</td>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table III. Two types of Ramsey numbers $R(G,H)$, includes all known nontrivial values.

(a) The exact values in Table III involving K_3-e are obvious, since one can easily see that $R(K_3-e,K_k) = R(K_3-e,K_{k+1}-e) = 2k - 1$, for all $k \geq 2$.

(b) The bound $R(K_4-e,K_8) \leq 45$ is given in [LinMac], and $R(K_3,K_{12}-e) \geq 46$ in [MPR]. Wang, Wang and Yan [WWY2] constructed cyclic graphs showing $R(K_3,K_{13}-e) \geq 54$, $R(K_3,K_{14}-e) \geq 59$ and $R(K_3,K_{15}-e) \geq 69$. It is known that $R(K_4,K_{12}-e) \geq 128$ [Shao] using one color of the (4,4,4;127)-coloring defined in [HiIr].

(c) If the quadratic residues Paley graph Q_p of prime order $p = 4t + 1$ contains no K_k-e, then $R(K_{k+1}-e,K_{k+1}-e) \geq 2p + 1$. In particular, $R(K_{14}-e,K_{14}-e) \geq 2987$ [LiShen]. See also item 2.3.i.
H K_{4-e} \quad K_{5-e} \quad K_{6-e} \quad K_{7-e} \quad K_{8-e} \quad K_{9-e} \quad K_{10-e} \quad K_{11-e}

G

K_3 \quad CH2 \quad Clan \quad FRS1 \quad GH \quad Ra1 \quad Ra1 \quad MPR \quad MPR \quad WWY2

K_{4-e} \quad CH1 \quad FRS2 \quad McR \quad McR \quad Ea1 \quad Ex14 \quad Ex14

K_4 \quad CH2 \quad EHM1 \quad Ex11 \quad Ex14 \quad HZ2

K_{5-e} \quad FRS2 \quad CEHMS \quad Ex14 \quad Ex14 \quad HZ2

K_5 \quad BH \quad Ex8 \quad Ea1 \quad HZ2

K_{6-e} \quad McR \quad Ex14 \quad Ex14 \quad Ex14 \quad HZ2

K_6 \quad McN \quad Ex14 \quad Ea1 \quad HYZ \quad ShZ2

K_{7-e} \quad McR \quad Ex14 \quad HZ2 \quad Ex14 \quad HZ2 \quad ShZ2

K_7 \quad Ea1 \quad Ex14 \quad ShZ2 \quad HYZ

References for Table III.

(d) More bounds (not shown in Table III) can be obtained by using Table I, an obvious generalization of the inequality $R(k, l) \leq R(k-1, l) + R(k, l-1)$, and by monotonicity of Ramsey numbers, in this case $R(K_{k-1}, G) \leq R(K_{k-e}, G) \leq R(K_k, G)$.

(e) All (K_3, K_{l-e})-graphs for $l \leq 6$ have been enumerated [Ra1].

(f) For the following the critical graphs are unique: $R(K_3, K_{l-e})$ for $l=3$ [Tr], 6 and 7 [Ra1], $R(K_{4-e}, K_{4-e})$ [FRS2], $R(K_{5-e}, K_{5-e})$ [Ra3] and $R(K_{4-e}, K_{7-e})$ [McR].

(g) The number of $R(K_3, K_{l-e})$-critical graphs for $l = 4, 5$ and 8 is 4, 2 and 9, respectively [MPR], and there are at least 6 such graphs for $R(K_3, K_{9-e})$ [Ra1].

(h) All the critical graphs for the cases $R(K_{4-e}, K_4)$ [EHM1], $R(K_{4-e}, K_5)$ and $R(K_{5-e}, K_4)$ [DzFi1] are known, and there are 5, 13 and 6 of them, respectively.

(i) $R(K_{k-e}, K_{k-e}) \leq 4R(K_{k-2}, K_{k-e}) - 2$ [LiShen].

(j) For a similar inequality for complete graphs see 2.3.b.

(k) The upper bounds from [ShZ1, ShZ2] are subsumed by a later article [Shi2].

(l) The upper bounds in [HZ2] were obtained by a reasoning generalizing the bounds for classical numbers in [HZ1]. Several other results from section 2.3 apply, though checking in which situation they do may require looking inside the proofs whether they still hold for $K_n - e$.
3.2. Complete bipartite graphs

NOTE: This subsection gathers information on Ramsey numbers where specific bipartite graphs are avoided in a coloring of K_n (as everywhere in this survey), in contrast to often studied bipartite Ramsey numbers (not covered in this survey) where the initial coloring is of a bipartite graph $K_{n,m}$.

Numbers

The following Tables IVa and IVb gather information mostly from the surveys by Lortz and Mengersen [LoM3, LoM4]. All cases involving $K_{1,2} = P_3$ are solved by a formula for $R(P_3, G)$, holding for all isolate-free graphs G, derived in [CH2]. All star versus star numbers are given by 3.2.a.

<table>
<thead>
<tr>
<th>p, q</th>
<th>1, 2</th>
<th>1, 3</th>
<th>1, 4</th>
<th>1, 5</th>
<th>1, 6</th>
<th>2, 2</th>
<th>2, 3</th>
<th>2, 4</th>
<th>2, 5</th>
<th>3, 3</th>
<th>3, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m, n</td>
<td></td>
</tr>
<tr>
<td>2, 2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>CH2</td>
<td>Par3</td>
<td>Par3</td>
<td>FRS4</td>
<td>CH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>FRS4</td>
<td>Stev</td>
<td>FRS4</td>
<td>FRS4</td>
<td>HaMe4</td>
<td>Bu4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 4</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>HaMe3</td>
<td>Stev</td>
<td>HaMe4</td>
<td>LoM4</td>
<td>HaMe4</td>
<td>ExRe</td>
<td>EHM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>HaMe3</td>
<td>Stev</td>
<td>LoM4</td>
<td>HaMe4</td>
<td>LoM3</td>
<td>LoM1</td>
<td>EHM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 6</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15*</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>HaMe3</td>
<td>Stev</td>
<td>Stev</td>
<td>Shao</td>
<td>HaMe4</td>
<td>LoM3</td>
<td>LoM3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 3</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>HaMe3</td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>HaMe3</td>
<td>LoM4</td>
<td>LoM4</td>
<td>LoM4</td>
<td>Lortz</td>
<td>HaMe3</td>
<td>LoM4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>≤21</td>
<td>≤25</td>
<td>≤30</td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>HaMe3</td>
<td>LoM4</td>
<td>LoM4</td>
<td>LoM4</td>
<td>Lortz</td>
<td>LoM4</td>
<td>LoM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 5</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>16'</td>
<td>17'</td>
<td>≥21'</td>
<td>≥28</td>
<td>≤33</td>
</tr>
<tr>
<td></td>
<td>CH2</td>
<td>HaMe3</td>
<td>Sh+</td>
<td>Sh+</td>
<td>HaMe4</td>
<td>Shao</td>
<td>Shao</td>
<td>Shao</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IVa. Ramsey numbers $R(K_{m,n}, K_{p,q})$.
(unpublished results are marked with a *, Sh+ abbreviates ShaXBP)

(a) The next few easily computed values of $R(K_{1,n}, K_{2,2})$, extending data in the first row of Table IVa, are 13, 14, 21 and 22 for n equal to 9, 10, 16 and 17, respectively. See function $f(n)$ in 3.2.c of the next subsection below.

(b) Formula for $R(K_{1,n}, K_{k_1,k_2, \ldots, k_t,m})$ for m large enough, in particular for $t=1, k_1=2$ with $n \leq 5, m \geq 3$ and $n = 6, m \geq 11$, for example $R(K_{1,5}, K_{2,7}) = 15$ [Stev].
Table IVb. Known Ramsey numbers $R(K_{2,n}, K_{2,m})$, for $6 \leq n \leq 11$, $2 \leq m \leq 11$.
(unpublished results are marked with a *, Sh+ abbreviates ShaXBP)

(c) The values and bounds for higher cases of $R(K_{2,2}, K_{2,n})$ are 20, 22, 22/23, 22/24, 25, 26, 27/28, 28/29, 30 and 32 for $12 \leq n \leq 21$, respectively. More exact values can be found for prime powers $\lceil \sqrt{n} \rceil$ and $\lceil \sqrt{n} \rceil + 1$ [HaMe4].

(d) The known values of $R(K_{2,2}, K_{3,n})$ are 15, 16, 17, 20 and 22 for $6 \leq n \leq 10$ [Lortz], and $R(K_{2,2}, K_{3,11}) = 24$ [Shao]. See Tables IVa and IVb for the smaller cases, and [HaMe4] for upper bounds and values for some prime powers $\lceil \sqrt{n} \rceil$.

(e) $R(K_{2,n}, K_{2,n})$ is equal to 46, 50, 54, 57 and 62 for $12 \leq n \leq 16$, respectively. The first open diagonal case is $65 \leq R(K_{2,17}, K_{2,17}) \leq 66$ [EHM2]. The status of all higher cases for $n < 30$ is listed in [LoM1].

(f) $R(K_{1,4}, K_{4,4}) = R(K_{1,5}, K_{4,4}) = 13$ [ShaXPB]
$R(K_{1,4}, K_{1,2,3}) = R(K_{1,4}, K_{2,2,2}) = 11$ [GuSL]
$R(K_{1,7}, K_{2,3}) = 13$ [Par4]
$R(K_{1,15}, K_{2,3}) = 20$ [La2]
$R(K_{2,2}, K_{4,4}) = 14$ [HaMe4]
$R(K_{2,2}, K_{4,5}) = 15$ [Shao]
$R(K_{2,2}, K_{4,6}) = 16$ [Shao]
$R(K_{2,2}, K_{5,5}) = R(K_{2,3}, K_{3,5}) = 17$ [Shao]
$R(K_{3,5}, K_{3,5}) \leq 38$ [LoM2]
$R(K_{4,4}, K_{4,4}) \leq 62$ [LoM2]

\[m\]	2	3	4	5	6	7	8	9	10	11
6 | HaMe4 | LoM3 | LoM3 | 20 | 21 | | | | | |
7 | HaMe4 | LoM3 | 17 | 19 | 21 | 24 | 26 | | | |
8 | HaMe4 | LoM3 | 18 | 20 | 22 | 24 | 25 | 28 | 30 | |
9 | HaMe4 | LoM3 | 19 | 22 | 25* | 27* | 29* | 32 | 33 | |
10 | HaMe4 | LoM3 | 21 | 24 | 27 | 28-31 | 32-33 | 36 | 38 | |
11 | HaMe4 | | | | | | | | | |
General results

(a) \(R(K_{1,n}, K_{1,m}) = n + m - \varepsilon \), where \(\varepsilon = 1 \) if both \(n \) and \(m \) are even and \(\varepsilon = 0 \) otherwise [Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

(b) \(R(K_{1,3}, K_{m,n}) = m + n + 2 \) for \(m, n \geq 1 \) [HaMe3].

(c) \(R(K_{1,n}, K_{2,2}) = f(n) \leq n + \sqrt{n} + 1 \), with \(f(q^2) = q^2 + q + 1 \) and \(f(q^2 + 1) = q^2 + q + 2 \) for every \(q \) which is a prime power [Par3]. Furthermore, \(f(n) \geq n + \sqrt{n} - 6n^{11/40} \) [BEFRS5]. For more bounds and values of \(f(n) \) see [Par5, Chen, ChenJ, MoCa].

(d) \(R(K_{1,n+1}, K_{2,2}) \leq R(K_{1,n}, K_{2,2}) + 2 \) [Chen].

(e) \(R(K_{2,k+1}, K_{1,v-k+1}) \) is either \(v + 1 \) or \(v + 2 \) if there exists a \((v, k, \lambda)\)-difference set. This and other related results are presented in [Par4, Par5]. See also [GoCM, GuLi].

(f) Formulas and bounds on \(R(K_{2,2}, K_{2,n}) \), and bounds on \(R(K_{2,2}, K_{m,n}) \). In particular, \(R(K_{2,2}, K_{2,k}) = n + k\sqrt{n} + c \), for \(k = 2, 3, 4 \) and some prime powers \([\sqrt{n}]\) and \([\sqrt{n}] + 1\), for some \(-1 \leq c \leq 3\) [HaMe4].

(g) \(R(K_{2,n}, K_{2,n}) \leq 4n - 2 \) for all \(n \geq 2 \), and the equality holds iff a strongly regular \((4n - 3, 2n - 2, n - 2, n - 1)\)-graph exists [EHM2].

(h) Conjecture that \(4n - 3 \leq R(K_{2,n}, K_{2,n}) \leq 4n - 2 \) for all \(n \geq 2 \). Many special cases are solved and several others are discussed in [LoM1].

(i) \(R(K_{2,n-1}, K_{2,n}) \leq 4n - 4 \) for all \(n \geq 3 \), with the equality if there exists a symmetric Hadamard matrix of order \(4n - 4 \). There are only 4 cases in which the equality does not hold for \(3 \leq n \leq 58 \), namely 30, 40, 44 and 48 [LoM1].

(j) \(R(K_{2,n-s}, K_{2,n}) \leq 4n - 2s - 3 \) for \(s \geq 2 \) and \(n \geq s + 2 \), with the equality in many cases involving Hadamard matrices or strongly regular graphs. Asymptotics of \(R(K_{2,n}, K_{2,m}) \) for \(m \gg n \) [LoM3].

(k) Some algebraic lower and upper bounds on \(R(K_{s,n}, K_{t,m}) \) for various combinations of \(n \), \(m \) and \(1 \leq t, s \leq 3 \) [BaiLi, BaiX].

(l) Upper bounds for \(R(K_{2,2}, K_{m,n}) \) for \(m, n \geq 2 \), with several cases identified for which the equality holds. Special focus on the cases for \(m = 2 \) [HaMe4].

(m) Bounds for the numbers of the form \(R(K_{k,n}, K_{k,m}) \), specially for fixed \(k \) and close to the diagonal cases. Asymptotics of \(R(K_{3,n}, K_{3,m}) \) for \(m \gg n \) [LoM2].

(n) \(R(nK_{1,3}, mK_{1,3}) = 4n + m - 1 \) for \(n \geq m \geq 1, n \geq 2 \) [BES].

(o) Asymptotics for \(K_{2,m} \) versus \(K_n \) [CLRZ].

(p) Upper bound asymptotics for \(K_{k,m} \) versus \(K_n \) [LiZa1].

(q) Special two-color case applies in the study of asymptotics for multicolor Ramsey numbers for complete bipartite graphs [ChGra1].
3.3. Cycles, cycles versus complete graphs

Cycles

\[R(C_3, C_3) = 6 \quad \text{[GG, Bush]} \]
\[R(C_4, C_4) = 6 \quad \text{[CH1]} \]
\[R(C_3, C_n) = 2n - 1 \quad \text{for } n \geq 4 \quad \text{[ChaS]} \]

Result obtained independently in [Ros1] and [FS1], a new simpler proof in [KáRos]:

\[
R(C_n, C_m) = \begin{cases}
2n - 1 & \text{for } 3 \leq m \leq n, m \text{ odd, } (n, m) \neq (3,3) \\
n - 1 + m/2 & \text{for } 4 \leq m \leq n \text{ and } n \text{ even, } (n, m) \neq (4,4) \\
\max \{ n - 1 + m/2, 2m - 1 \} & \text{for } 4 \leq m < n, m \text{ even and } n \text{ odd}
\end{cases}
\]

\[R(nC_3, mC_3) = 3n + 2m \quad \text{for } n \geq m \geq 1, n \geq 2 \quad \text{[BES]} \]
\[R(nC_4, mC_4) = 2n + 4m - 1 \quad \text{for } m \geq n \geq 1, (n, m) \neq (1,1) \quad \text{[LiWa1]} \]
Formulas for \(R(nC_4, mC_5) \) \([\text{LiWa2}]\)

Formulas and bounds for \(R(nC_m, nC_m) \) \([\text{Den, Biel1}]\)

Unions of cycles, formulas and bounds for various cases including diagonal, different lengths, different multiplicities \([\text{MiSa, Den}]\), and their relation to 2-local Ramsey numbers \([\text{Biel1}]\).

Cycles versus complete graphs

Since 1976, it was conjectured that \(R(C_n, K_m) = (n - 1)(m - 1) + 1 \) for all \(n \geq m \geq 3 \), except \(n = m = 3 \) \([\text{FS4, EFRS2}]\). The parts of this conjecture were proved as follows: for \(n \geq m^2 - 2 \) \([\text{BoEr}]\), for \(n \geq 3 = m \) \([\text{ChaS}]\), for \(n \geq 4 = m \) \([\text{YHZ1}]\), for \(n \geq 5 = m \) \([\text{BJYHRZ}]\), for \(n \geq 6 = m \) \([\text{Schi1}]\), for \(n \geq m \geq 7 \) with \(n \geq m(m - 2) \) \([\text{Schi1}]\), for \(n \geq 7 = m \) \([\text{ChenCZ1}]\), and for \(n \geq 4m + 2, m \geq 3 \) \([\text{Nik}]\). Open conjectured cases are marked in Table V by "conj."
<table>
<thead>
<tr>
<th>K_n</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
<th>...</th>
<th>C_n for $n \geq m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td></td>
<td>$2n - 1$</td>
</tr>
<tr>
<td></td>
<td>GG-Bush</td>
<td>ChaS</td>
<td>ChaS</td>
<td>ChaS</td>
<td>ChaS</td>
<td>ChaS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_4</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td></td>
<td>$3n - 2$</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>CH2</td>
<td>He2/JR4</td>
<td>JR2</td>
<td>YHZ1</td>
<td>YHZ1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_5</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td></td>
<td>$4n - 3$</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>Clan</td>
<td>He2/JR4</td>
<td>JR2</td>
<td>YHZ2</td>
<td>BJYHRZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_6</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>26</td>
<td>31</td>
<td>36</td>
<td></td>
<td>$5n - 4$</td>
</tr>
<tr>
<td></td>
<td>Kéry</td>
<td>Ex2-RoJa1</td>
<td>JR5</td>
<td>Schi1</td>
<td>Schi1</td>
<td>Schi1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_7</td>
<td>23</td>
<td>22</td>
<td>25</td>
<td>31</td>
<td>37</td>
<td>43</td>
<td></td>
<td>$6n - 5$</td>
</tr>
<tr>
<td></td>
<td>Ka2-GY</td>
<td>RT-JR1</td>
<td>Schi2</td>
<td>CheCZN</td>
<td>CheCZN</td>
<td>JarBa/Ch+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_8</td>
<td>28</td>
<td>26</td>
<td>36</td>
<td>43</td>
<td>50</td>
<td></td>
<td></td>
<td>$7n - 6$</td>
</tr>
<tr>
<td></td>
<td>GR-MZ</td>
<td>RT</td>
<td>ChenCX</td>
<td>ChenCZ1</td>
<td>JarAl/ZZ3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_9</td>
<td>36</td>
<td>30-32</td>
<td>RT</td>
<td>...</td>
<td>8n - 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ka2-GR</td>
<td>RT-XSR1</td>
<td>...</td>
<td></td>
<td>con.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{10}</td>
<td>40-43</td>
<td>34-39</td>
<td>RT-XSR1</td>
<td>...</td>
<td>9n - 8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table V. Known Ramsey numbers $R(C_n, K_m)$.

(Ch+ abbreviates ChenCZ1, comments on joint credits in (b) of this section)

(a) The first column in Table V gives data from the first row in Table I.

(b) Joint credit [He2/JR4] in Table V refers to two cases in which Hendry [He2] announced the values without presenting the proofs, which later were given in [JR4]. The special cases of $R(C_6, K_5) = 21$ [JR2] and $R(C_7, K_5) = 25$ were solved independently in [YHZ2] and [BJYHRZ]. The double pointer [JarBa/ChenCZ1] refers to two independent papers, similarly as [JarAl/ZZ3], except that in the latter case [ZZ3] refers to an unpublished manuscript. For joint credits marked in Table V with "-", the first reference is for the lower bound and the second for the upper bound.

(c) Lower bound asymptotics [Spe2, FS4, AlRo].

(d) Upper bound asymptotics [BoEr, FS4, EFRS2, CLRZ, Sud1, LiZa2, AlRo].

(e) For cycles versus graphs other than complete see sections 3.4, 3.5 and 4.9.
3.4. Cycles versus wheels

Note: In this survey the wheel graph $W_n = K_1 + C_{n-1}$ has n vertices, while some authors use the definition $W_n = K_1 + C_n$ with $n + 1$ vertices. For the cases $W_3 = C_3$ versus C_m see section 3.3.

<table>
<thead>
<tr>
<th>W_4</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
<th>C_m</th>
<th>for</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>$3m-2$</td>
<td>$m \geq 4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>YHZ1</td>
</tr>
<tr>
<td>W_5</td>
<td>11</td>
<td>Clan</td>
<td>Clan</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>$2m-1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SubB2</td>
</tr>
<tr>
<td>W_6</td>
<td>11</td>
<td>BE3</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>$3m-2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SubB2</td>
</tr>
<tr>
<td>W_7</td>
<td>13</td>
<td>BE3</td>
<td>9</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>$2m-1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ChenCMN</td>
</tr>
<tr>
<td>W_8</td>
<td>15</td>
<td>BE3</td>
<td>11</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td>$3m-2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 7$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ChenCMN</td>
</tr>
<tr>
<td>W_9</td>
<td>17</td>
<td>BE3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2m-1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 11$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ChenCMN</td>
</tr>
</tbody>
</table>

Table VI. Ramsey numbers $R(W_n, C_m)$, for $n \leq 9$, $m \leq 8$.
(results from unpublished manuscript are marked with a *)

(a) $R(C_3, W_n) = 2n - 1$ for $n \geq 6$ [BE3]. All critical graphs have been enumerated. The critical graphs are unique for $n = 3, 5$, and for no other n [RaJi].

(b) $R(C_4, W_n) = 13, 14, 16, 17$ for $n = 10, 11, 12, 13$, respectively [Tse1]

$R(C_4, W_n) \leq n + \lceil (n-1)/3 \rceil$ for $n \geq 7$ [SuBUB]

(c) $R(W_n, C_m) = 2n - 1$ for odd m with $n \geq 5m - 6$ [Zhou2]

(d) $R(W_n, C_m) = 3m - 2$ for even $n \geq 4$ with $m \geq n - 1, m \neq 3$, was conjectured by Surahmat et al. [SuBT1, SuBT2, Sur]. Parts of this conjecture were proved in [SuBT1, ZhaCC], and the proof was completed in [ChenCMN].

(e) Conjecture that $R(W_n, C_m) = 2m - 1$ for odd $n \geq 3$ and all $m \geq 5$ with $m > n$ [Sur]. It was proved for $2m \geq 5n - 7$ [SuBT1], and further for $2m \geq 3n - 5$ [ChenCMN].

(f) Cycles are Ramsey unsaturated for some wheels [AliSur]

(g) Study of cycles versus generalized wheels $W_{k,n}$ [Sur, SuBTB]
3.5. Cycles versus books

<table>
<thead>
<tr>
<th></th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
<th>C_9</th>
<th>C_{10}</th>
<th>C_{11}</th>
<th>C_m for</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>$2m - 1$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>F1a6</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 2$</td>
</tr>
<tr>
<td>B_3</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>$2m - 1$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>F1a6</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 8$</td>
</tr>
<tr>
<td>B_4</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>$2m - 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>F1a6</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 10$</td>
</tr>
<tr>
<td>B_5</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>$2m - 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>F1a6</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 12$</td>
</tr>
<tr>
<td>B_6</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>$2m - 1$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>F1a6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 14$</td>
</tr>
<tr>
<td>B_7</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>$2m - 1$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>F1a6</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 16$</td>
</tr>
<tr>
<td>B_8</td>
<td>19</td>
<td>17</td>
<td>19</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2m - 1$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>T1a1</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 18$</td>
</tr>
<tr>
<td>B_9</td>
<td>21</td>
<td>18</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2m - 1$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>T1a1</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 20$</td>
</tr>
<tr>
<td>B_{10}</td>
<td>23</td>
<td>19</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2m - 1$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>T1a1</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 22$</td>
</tr>
<tr>
<td>B_{11}</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2m - 1$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td>T1a1</td>
<td></td>
<td>F18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$m \geq 24$</td>
</tr>
<tr>
<td>B_{12}</td>
<td>...</td>
<td>...</td>
<td>$2n + 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$2n + 3$</td>
</tr>
<tr>
<td></td>
<td>R1</td>
<td></td>
<td>some</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>large</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>books</td>
</tr>
</tbody>
</table>

Table VII. Ramsey numbers $R(B_n, C_m)$ for $n, m \leq 11$. (using et al. abbreviations Fal for FRS and Cal for CRSPS)

(a) For the cases of $B_1 = K_3$ versus C_m see section 3.3. Centered entries in italics (middle of Table VII) are from personal communication and manuscripts by Shao. The latter include $R(B_n, C_n) \geq 3n - 2$, $R(B_n - 1, C_n) \geq 3n - 4$ for $n \geq 3$, and an improvement to the bound on m in (e) to $m \geq 2n - 1 \geq 7$ [Shao].

(b) $R(C_4, B_{12}) = 21$ [Tse1], $R(C_4, B_{13}) = 22$, $R(C_4, B_{14}) = 24$ [Tse2]. $R(C_4, B_8) = 17$ [Tse2] (it was reported incorrectly in [FRS6] to be 16).

(c) $q^2 + q + 2 \leq R(C_4, B_{q^2 + q + 1}) \leq q^2 + q + 4$ for prime power q [FRS6]. B_n is a subgraph of B_{n+1}, hence likely $R(C_4, B_n) = n + O(\sqrt{n})$ (compare to $R(C_4, K_{2,n})$ in section 3.2).

(d) $R(B_n, C_m) = 2n + 3$ for odd $m \geq 5$ with $n \geq 4m - 13$ [FRS8]

(e) $R(B_n, C_m) = 2m - 1$ for $n \geq 1, m \geq 2n + 2$ [FRS8]

(f) More theorems on $R(B_n, C_m)$ in [FRS6, FRS8, NiRo4, Zhou1]
4. General Graph Numbers in Two Colors

This section includes data with respect to general graph results. We tried to include all nontrivial values and identities regarding exact results (or references to them), but only those out of general bounds and other results which, in our opinion, have a direct connection to the evaluation of specific numbers. If some small value cannot be found below, it may be covered by the cumulative data gathered in section 7, or be a special case of a general result listed in this section. Note that $P_2 = K_2$, $B_1 = F_1 = C_3 = W_3 = K_3$, $B_2 = K_4 - e$, $P_3 = K_3 - e$, $W_4 = K_4$ and $C_4 = K_{2,2}$ imply other identities not mentioned explicitly.

4.1. Paths

$$R(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1 \quad \text{for all } n \geq m \geq 2 \quad [\text{GeGy}]$$

Stripes mP_2 [CL1, CL2, Lor]

Disjoint unions of paths (also called linear forests) [BuRo2, FS2]

4.2. Wheels

Note: In this survey the wheel graph $W_n = K_1 + C_{n-1}$ has n vertices, while some authors use the definition $W_n = K_1 + C_n$ with $n + 1$ vertices.

<table>
<thead>
<tr>
<th>n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>BE3</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>Clan</td>
<td></td>
<td></td>
<td>BE3</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>17</td>
<td>19</td>
<td>FM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>He3</td>
<td></td>
<td>FM</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>17</td>
<td></td>
<td>FM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>He2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>FM</td>
</tr>
</tbody>
</table>

Table VIII. Ramsey numbers $R(W_n, W_m)$, for $n \leq m \leq 7$.

(a) $R(W_3, W_n) = 2n - 1$ for all $n \geq 6$ [BE3]

All critical colorings for $R(W_3, W_n)$ for all $n \geq 3$ [RaJi]

(b) The value $R(W_5, W_5) = 15$ was given in the Hendry’s table [He2] without a proof. Later the proof was published in [HaMe2].

(c) All critical colorings (2, 1 and 2) for $R(W_n, W_6)$ for $n = 4, 5, 6$ [FM]

(d) $R(W_6, W_6) = 17$, $R(4,4) = 18$ and $\chi(W_6) = 4$ give a counterexample $G = W_6$ to the Erdős conjecture (see [GRS]) that $R(G, G) \geq R(K_{\chi(G)}, K_{\chi(G)})$.

- 18 -
4.3. Books

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>6</td>
<td>CH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Clan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>10</td>
<td>CH1</td>
<td>11</td>
<td>Clan</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rou</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

Table IX. Ramsey numbers $R(B_n, B_m)$, for $n, m \leq 7$.

(Sh+ abbreviates ShaXBP)

(a) $254 \leq R(B_{37}, B_{88}) \leq 255$ [Par6]

(b) Recent computations established that $R(B_2, B_6) \leq 17$ (and thus equal to 17) and $R(B_2, B_7) = 18$, with 3 and 65 critical graphs, respectively [BLR].

(c) $R(B_1, B_n) = 2n + 3$ for all $n > 1$ [RS1]

(d) $R(B_n, B_m) = 2n + 3$ for all $n \geq cm$ for some $c < 10^6$ [NiRo2, NiRo3]

(e) $R(B_n, B_m) = (4 + o(1))n$ [RS1, NiRS]

(f) In general, $R(B_n, B_n) = 4n + 2$ for $4n + 1$ a prime power. Several other specific values (like $R(B_{62}, B_{65}) = 256$) and general equalities and bounds for $R(B_n, B_m)$ can be found in [RS1, FRS7, Par6, NiRS, LiRZ2].

4.4. Trees and forests

In this subsection T_n and F_n denote n-vertex tree and forest, respectively.

(a) $R(T_n, T_n) \leq 4n + 1$ [EG]

(b) $R(T_n, T_n) \geq \lfloor (4n - 1)/3 \rfloor$ [BE2], see also section 4.17

(c) Conjecture that $R(T_n, T_n) \leq 2n - 2$, note that this is almost the same as asking if $R(T_n, T_n) \leq R(K_{1,n-1}, K_{1,n-1})$ [BE2], see also [Bu7, FSS1, ChGra2]. Discussion of the conjecture that $R(T_n, T_m) \leq n + m - 2$ holds for all trees [FSS1].
(d) If $\Delta(T_n) = n - 2$, $\Delta(T_m) = m - 2$ then the exact values of $R(T_n, T_m)$ are known, and they are between $n + m - 5$ and $n + m - 3$ depending on n and m. In particular, for $n = 2k + 1$ $R(T_{2k+1}, T_{2k+1}) = 2n - 5$ [GuoV].

(e) View tree T as a bipartite graph with parts t_1 and t_2, $t_2 \geq t_1$. Define $b(T) = \max\{2t_1 + t_2 - 1, 2t_2 - 1\}$. Then the bound $R(T, T) \geq b(T)$ holds always, $R(T, T) = b(T)$ holds for many classes of trees [EFRS3, GeGy], and asymptotically [HaLT], but cases for nonequality have been found [GHK].

(f) $R(F_n, F_n) > n + \log_2 n - O(\log\log n)$ [BE2], forests are tight for this bound [CsKo].

(g) Comment in [BaLS] about a recent result of the authors of [AKS], which implies that $R(T_n, T_n) \leq 2n - 2$ holds for sufficiently large n.

(h) $R(T_m, K_{1,n}) \leq m + n - 1$, with equality for $(m - 1) \mid (n - 1)$ [Bu1].

(i) $R(T_m, K_{1,n}) = m + n - 1$ for sufficiently large n for almost all trees T_m [Bu1]. Many cases were identified for which $R(T_m, K_{1,n}) = m + n - 2$ [Coc, ZZ1], see also [Bu1].

(j) $R(T_m, K_{1,n}) \leq m + n$ if T_n is not a star and $(m - 1) \nmid (n - 1)$, some classes of trees and stars for which the equality holds [GuoV].

(k) Forests, linear forests (unions of paths) [BuRo2, FS3, CsKo].

(l) Paths versus trees [FSS1], see also other parts of this survey involving special graphs, in particular sections 4.5, 4.7 and 4.12.

4.5. Stars, stars versus other graphs

$R(K_{1,n}, K_{1,m}) = n + m - \varepsilon$, where $\varepsilon = 1$ for even n and m, and $\varepsilon = 0$ otherwise [Har1]. This is also a special case of multicolor numbers for stars obtained in [BuRo1].

$R(K_{1,n}, K_{1,m}) = n(m - 1) + 1$ by Chvátal’s theorem [Chv].

Stars versus C_4 [Par3, Par4, Par5, BEFRS5, Chen, ChenJ, GoMC, MoCa]
Stars versus $K_{2,n}$ [Par4, GoMC]
Stars versus $K_{n,m}$ [Stev, Par3]
Stars versus complete bipartite graphs [Par4, Stev]
See also section 3.2

$R(K_{1,4}, B_4) = 11$ [RS2]
$R(K_{1,4}, K_{1,2,3}) = R(K_{1,4}, K_{2,2,2}) = 11$ [GuSL]
$nK_{1,m}$ versus W_5 [BaHA]
Stars versus W_5 and W_6 [SuBa1]
Stars versus W_9 [Zhang2, ZhaCZ1]
Stars versus wheels [HaBA1, ChenZZ2, Kor]
Stars versus paths [Par2, BEFRS2]
Stars versus cycles [La1, Clark, see Par6]
Stars versus books [CRSPS, RS2]
Stars versus trees [Bu1, Cheng, Coc, GuoV, ZZ1]
Stars versus stripes mP_2 [CL1, CL2, Lor]
Stars versus $K_n - tK_2$ [Hua1, Hua2]
Stars versus $2K_2$ [MO]
Union of two stars [Gros2]
Unions of stars versus wheels [BaHA, HaBA2]

4.6. Fans, fans versus other graphs

$R(F_1, F_n) = R(K_3, F_n) = 4n + 1$ for $n \geq 2$, and bounds for $R(F_m, F_n)$ [LR2, GGS]

$R(F_2, F_n) = 4n + 1$ for $n \geq 2$ and $R(F_m, F_n) \leq 4n + 2m$ for $n \geq m \geq 2$ [LinLi]

$R(K_4, F_n) = 6n + 1$ for $n \geq 3$ [SuBB3]

Fans versus paths, formulas for a number of cases including $R(P_6, F_n)$ [SaBr2].
Missing case $R(P_6, F_4) = 12$ solved in [Shao].
Fans versus K_n [LR2]
Lower bounds on $R(F_2, K_n)$ from cyclic graphs for $n \leq 9$ [Shao]

4.7. Paths versus other graphs

P_3 versus all isolate-free graphs [CH2]
Paths versus stars [Par2, BEFRS2]
Paths versus trees [FS4, FSS1]
Paths versus books [RS2]
Paths versus cycles [FLPS, BEFRS2]
Paths versus K_n [Par1]
Paths versus $K_{n,m}$ [Häg]
Paths versus W_5 and W_6 [SuBa1]
Paths versus W_7 and W_8 [Bas]
Paths versus wheels [BaSu, ChenZZ1, SaBr3, Zhang1]
Paths versus fans [SaBr2]
Paths versus $K_1 + P_m$ [SaBr1, SaBr4]
Paths and cycles versus trees [FSS1]
Sparse graphs versus paths and cycles [BEFRS2]
Graphs with long tails [Bu2, BG]
Monotone paths and cycles [Lef]
Unions of paths [BuRo2]

4.8. Triangle versus other graphs

$R(3, k) = \Theta(k^2 / \log k)$ [Kim]

Explicit construction for $R(3, 4k + 1) \geq 6R(3, k + 1) - 5$, for all $k \geq 1$ [CCD]

Explicit triangle-free graphs with independence k on $\Omega(k^{3/2})$ vertices [Alon2, CPR]

$R(K_3, K_7 - 2P_2) = R(K_3, K_7 - 3P_2) = 18$ [SchSch2]
\(R(K_3, K_3 + \overline{K}_m) = R(K_3, K_3 + C_m) = 2m + 5 \) for \(m \geq 212 \) [Zhou1]
\(R(K_3, K_2 + T_n) = 2n + 3 \) for \(n \)-vertex trees \(T_n \), for \(n \geq 4 \) [SoGQ]

\(R(K_3, G) = 2n(G) - 1 \) for any connected \(G \) on at least 4 vertices and with at most \((17n(G) + 1)/15\) edges, in particular for \(G = P_i \) and \(G = C_i \), for all \(i \geq 4 \) [BEFRS1]

\(R(K_3, G) \leq 2e(G) + 1 \) for any graph \(G \) without isolated vertices [Sid3, GK]
\(R(K_3, G) \leq n(G) + e(G) \) for all \(G \), a conjecture [Sid2]
\(R(K_3, G) \) for all connected \(G \) up to 9 vertices [BBH1, BBH2], see also section 7.1
\(R(K_3, K_n) \), see section 2
\(R(K_3, K_n - e) \), see section 3.1

Formulas for \(R(nK_3, mG) \) for all \(G \) of order 4 without isolates [Zeng]

Since \(B_1 = F_1 = C_3 = W_3 = K_3 \), other sections apply

See also [AKS, BBH1, BBH2, FrLo, Fra1, Fra2, Gri, Loc, KM1, LiZa1, RK3, RK4, She2, Spe2, Stat, Yu1]

4.9. Cycles versus other graphs

Note: for cycles versus \(K_n, W_n, B_n \) - see section 3.

\(C_4 \) versus stars [Par3, Par4, Par5, BEFRS5, Chen, ChenJ, GoMC, MoCa]
\(C_4 \) versus trees [EFRS4, Bu7, BEFRS5, Chen]
\(C_4 \) versus all graphs on six vertices [JR3]
\(C_4 \) versus various types of complete bipartite graphs, see section 3.2
\(R(C_4, G) \leq 2q + 1 \) for any isolate-free graph \(G \) with \(q \) edges [RoJa2]
\(R(C_4, G) \leq p + q − 1 \) for any connected graph \(G \) on \(p \) vertices and \(q \) edges [RoJa2]

\(R(C_5, K_6 - e) = 17 \) [JR4]
\(R(C_5, K_4 - e) = 9 \) [CRSPS]
\(C_5 \) versus all graphs on six vertices [JR4]
\(R(C_6, K_5 - e) = 17 \) [JR2]
\(C_6 \) versus all graphs on five vertices [JR2]
\(R(C_{2m+1}, G) = 2n - 1 \) for sufficiently large sparse graphs \(G \) on \(n \) vertices, in particular
\(R(C_{2m+1}, T_n) = 2n - 1 \) for all \(n > 1512m + 756 \), for \(n \) vertex trees \(T_n \) [BEFRS2]
\(R(C_n, G) \leq 2q + \lfloor n/2 \rfloor - 1 \), for \(3 \leq n \leq 5 \), for any isolate-free graph \(G \) with \(q > 3 \) edges.
It is conjectured that it also holds for other \(n \) [RoJa2].

Cycles versus paths [FLPS, BEFRS2]
Cycles versus stars [La1, Clark, see Par6]
Cycles versus trees [BEFRS2, FSS1]
Monotone paths and cycles [Lef]
Cycles versus \(K_{n,m} \) and multipartite complete graphs [BoEr]
4.10. Wheels versus other graphs

Notes: In this survey the wheel graph $W_n = K_1 + C_{n-1}$ has n vertices, while some authors use the definition $W_n = K_1 + C_n$ with $n + 1$ vertices.

For cycles versus W_n - see section 3.4.

$R(W_5, K_5-e) = 17$ [He2][YH]
$R(W_5, K_5) = 27$ [He2][RST]
$R(W_5, K_6) \geq 33$, $R(W_5, K_7) \geq 43$ [Shao]
W_5 and W_6 versus stars and paths [SuBa1]
W_5 versus $nK_{1,m}$ [BaHA]
W_5 and W_6 versus trees [BSNM]
W_7 and W_8 versus paths [Bas]
W_7 versus trees T_n with $\Delta(T_n) \geq n - 3$, other special trees T, and for $n \leq 8$ [ChenZZ3, ChenZZ5, ChenZZ6]
W_7 and W_8 versus trees [ChenZZ4, ChenZZ5]
W_9 versus stars [Zhang2, ZhaCZ1, ChenCZ2]
W_9 versus trees of high degree [ZhaCZ2]

Wheels versus stars [HaBA1, ChenZZ2, Kor]
Wheels W_n, for even n, versus star-like trees [SuBB1]
Wheels versus paths [BaSu, ChenZZ1, SaBr3, Zhang1]
Wheels versus books [Zhou3]
Wheels versus unions of stars [BaHA, HaBA2]
Wheels versus linear forests (disjoint unions of paths) [SuBa2]
Upper bound asymptotics for $R(W_n, K_m)$ [Song5, SoBL]

4.11. Books versus other graphs

Note: for cycles versus B_n see section 3.5.

$R(B_3, K_4) = 14$ [He3]
$R(B_3, K_5) = 20$ [He2][BaRT]
$R(B_4, K_{1,4}) = 11$ [RS2]
Cyclic lower bounds for $R(B_m, K_n)$ for $m \leq 7$, $n \leq 9$
and for $R(B_3, K_n-e)$ for $n \leq 7$ [Shao]
Books versus paths [RS2]
Books versus stars [CRSPS, RS2]
Books versus trees [EFRS7]
Books versus K_n [LR1, Sud2]
Books versus wheels [Zhou3]
Books versus $K_2 + C_n$ [Zhou3]
Books and $(K_1 + tree)$ versus K_n [LR1]
Generalized books $K_r + qK_1$ versus K_n [NiRo1, NiRo4]
4.12. Trees and forests versus other graphs

In this subsection T_n and F_n denote n-vertex tree and forest, respectively.

$R(T_n, K_m) = (n - 1)(m - 1) + 1$ [Chv]

$R(T_n, C_{2m+1}) = 2n - 1$ for all $n > 1512m + 756$ [BEFRS2]

$R(T_n, B_m) = 2n - 1$ for all $n \geq 3m - 3$ [EFRS7]

$R(F_{nk}, K_m) = (n - 1)(m - 2) + nk$ for all forests F_{nk} consisting of k trees with

n vertices each, also exact formula for all other cases of forests versus K_m [Stahl]

Exact results for almost all small ($n(G) \leq 5$) connected G versus all trees [FRS4]

Trees versus C_4 [EFRS4, Bu7, BEFRSS5, Chen]

Trees versus paths [FS4, FSS1]

Trees versus cycles [FSS1, EFRS6]

Trees versus stars [Bu1, Cheng, Coc, GuoV, ZZ1]

Trees versus books [EFRS7]

Trees versus W_5 and W_6 [BSNM]

Trees versus W_7 and W_8 [ChenZZ4, ChenZZ5]

Trees T_n with $\Delta(T_n) \geq n - 3$, other special trees T, and for $n \leq 8$ versus W_7 [ChenZZ3, ChenZZ5, ChenZZ6]

Trees T_n with $\Delta(T_n) \geq n - 4$ versus W_9 [ZhaCZ2]

Star-like trees versus odd wheels [SuBB1, ChenZZ3]

Trees versus $K_n + \overline{K}_m$ [RS2, FSR]

Trees versus bipartite graphs [BEFRS5, EFRS6]

Trees versus almost complete graphs [GoJa2]

Trees versus multipartite complete graphs [EFRS8, BEFRSGJ]

Linear forests versus wheels [SuBa2]

Forests versus almost complete graphs [CGP]

Forests versus complete graphs [BE1, Stahl, BaHA]

Study of graphs G for which all or almost all trees are G-good [BF, BEFRSGJ], see also section 4.17, item [Bu2], for the definition and more pointers.

See also various parts of this survey for special trees, sparse graphs and section 4.4.

4.13. Cases for $n(G), n(H) \leq 5$

Clancy [Clan], in 1977, presented a table of $R(G,H)$ for all isolate-free graphs G with $n(G)=4$ and H with $n(H)=4$, except 5 entries. All five of the open entries have been solved as follows:
\(R(B_3, K_4) = 14 \) \[\text{He3}\]
\(R(K_4-e, K_5) = 16 \) \[\text{BH}\]
\(R(W_5, K_4) = 17 \) \[\text{He2}\]
\(R(K_5-e, K_4) = 19 \) \[\text{EHM1}\]
\(R(K_5, K_4) = R(4,5) = 25 \) \[\text{MR4}\]

An interesting case in [Clan] is
\[R(K_4, K_5-P_3) = R(K_4, K_4+e) = R(4,4) = 18. \]

Hendry [He2], in 1989, presented a table of \(R(G,H) \) for all graphs \(G \) and \(H \) on 5 vertices without isolates, except 7 entries. Four of the open entries have been solved:
\[R(K_5, K_4+e) = R(4,5) = 25 \] \[\text{Ka1}\][\text{MR4}]
\[R(W_5, K_5-e) = 17 \] \[\text{He2}\][\text{YH}]
\[R(B_3, K_5) = 20 \] \[\text{He2}\][\text{BaRT}]
\[R(W_5, K_5) = 27 \] \[\text{He2}\][\text{RST}]

The still open cases for \(K_5 \) versus \(K_5-P_3, K_5-e \) and \(K_5 \) are as follows:
\[25 \leq R(K_5, K_5-P_3) \leq 26 \] \[\text{Ka1}\][\text{BLR}]
\[30 \leq R(K_5, K_5-e) \leq 34 \] \[\text{Ex8}\][\text{Ex8}]
\[43 \leq R(K_5, K_5) \leq 49 \] \[\text{Ex4}\][\text{MR5}]

All critical colorings for the case \(R(C_5+e, K_5) = 17 \) were found in [He5].

4.14. Mixed cases

\[26 \leq R(K_{2,2,2}, K_{2,2,2}), K_{2,2,2} \text{ is an octahedron} \] \[\text{Ex8}\]
Unicyclic graphs [Gros1, Köh, KrRod]
\(K_{2,m} \) and \(C_{2m} \) versus \(K_n \) [CLRZ]
\(K_{2,n} \) versus any graph [RoJa2]
Union of two stars [Gros2]
Double stars* [GHK]
Graphs with bridge versus \(K_n \) [Li1]
Multipartite complete graphs [BEFRS3, FRS3, Stev]
Multipartite complete graphs versus sparse graphs [EFRS4]
Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]
Graphs with long tails [Bu2, BG]
Brooms+ [EFRS3]

* double star is a union of two stars with their centers joined by an edge
+ broom is a star with a path attached to its center
4.15. **Multiple copies of graphs, disconnected graphs**

- $2K_2$ versus all isolate-free graphs [CH2]
- nK_2 versus mK_2, in particular $R(nK_2, nK_2) = 3n - 1$ for $n \geq 1$ [CL1, CL2, Lor]
- nK_3 versus mK_3, in particular $R(nK_3, nK_3) = 5n$ for $n \geq 2$ [BES], see also section 3.3
- nK_3 versus mK_4 [LorMu]
- $nK_{1,m}$ versus W_5 [BaHA]
- $R(nK_4, nK_4) = 7n + 4$ for large n [Bu8]
- Stripes mP_2 [CL1, CL2, Lor]
- $R(mG, nH) \leq (m - 1)n(G) + (n - 1)n(H) + R(G, H)$ [BES]
- Formulas for $R(nK_3, mG)$ for all isolate-free graphs G on 4 vertices [Zeng]
- Variety of results for numbers $R(nG, mH)$ [Bu1, BES, HaBA2]
- Disjoint unions of paths (also called linear forests) [BuRo2, FS2]
- Disconnected graphs versus other graphs [BE1, GoJa1]
- Study of Ramsey numbers for multiple copies of graphs [BES]
- See section 3.3 for cases involving unions of cycles
- See also [Bu9, BE1, LorMu, MiSa, Den, Biel1, Biel2]

4.16. **General results for sparse graphs**

- $R(K_n, T_m) = (n-1)(m-1) + 1$ for any tree T_m on m vertices.

- $R(C_{2m+1}, G) = 2n - 1$ for sufficiently large sparse graphs G on n vertices, little more complicated formulas for P_{2m+1} instead of C_{2m+1}.

- Graphs yielding $R(K_n, G) = (n-1)(n(G)-1) + 1$, called Ramsey n-good, and related results (see also [EFRS5]). Recent extensive survey and further study of n-goodness appeared in [NiRo4].

- $R(G, G) \leq c_d n(G)$ for all G, where constant c_d depends only on the maximum degree d in G. The constant was improved in [GRR1, FoxSu1]. Tight lower and upper bounds for bipartite G [GRR2, Con2].

- Study of L-sets, which are sets of pairs of graphs whose Ramsey numbers are linear in the number of vertices. Conjecture that Ramsey numbers grow linearly for d-degenerate graphs (graph is d-degenerate if all its subgraphs have minimum degree at most d). Progress towards this conjecture was obtained by several authors, including [KoRö1, KoRö2, KoSu, FoxSu1, FoxSu2].

- $R(G, G) \leq c_d n$ for all d-arrangeable graphs G on n vertices, in particular with the same constant for all planar graphs. The constant c_d was improved in [Eaton]. An extension to graphs not containing a subdivision of K_d [RöTh].

- Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs, arrangeable graphs, crowns, graphs with bounded maximum degree, planar graphs, and graphs without any topological minor of a fixed clique.
4.17. Other general two color results

[EFRS9] Study of graphs G, called Ramsey size linear, for which there exists a constant c_G such that for all H with no isolates $R(G, H) \leq c_G\chi(H)$. An overview and further results were given in [BaSS].

[LRS] $R(G, G) < 6n$ for all n-vertex graphs G, in which no two vertices of degree at least 3 are adjacent. This improves the result $R(G, G) \leq 12n$ in [Alon1]. In an early paper [BE1] it was proved that if any two points of degree at least 3 are at distance at least 3 then $R(G, G) \leq 18n$.

[Shi1] $R(Q_n, Q_n) \leq 2^{3+\sqrt{n}/2+o(n)}$, for the n-dimensional cube Q_n with 2^n vertices. This bound can also be derived from a theorem in [KoRo1]. An improvement was obtained in [Shi4], and a further one to $R(Q_n, Q_n) \leq 2^{2n+5n}$ in [FoxSu1].

[Gros1] Conjecture that $R(G, G) = 2n(G) - 1$ if G is unicyclic of odd girth. Further support for the conjecture was given in [Köh, KrRod].

[-] See also earlier subsections 4.* for various specific sparse graphs.

4.17. Other general two color results

[CH2] $R(G, H) \geq (\chi(G) - 1)(c(H) - 1) + 1$, where $\chi(G)$ is the chromatic number of G, and $c(H)$ is the size of the largest connected component of H.

[CH3] $R(G, G) > (s\cdot2^{e(G)})^{1/n(G)}$, where s is the number of automorphisms of G. Hence $R(K_{n,n}, K_{n,n}) > 2^n$, see also section 5.6.s.

[BE2] $R(G, G) \geq \lfloor(4n(G) - 1)/3\rfloor$ for any connected G, and $R(G, G) \geq 2n - 1$ for any connected nonbipartite G. These bounds can be achieved for all $n \geq 4$.

[Bu2] Graphs H yielding $R(G, H) = (\chi(G) - 1)(n(H) - 1) + s(G)$, where $s(G)$ is a chromatic surplus of G, defined as the minimum number of vertices in some color class under all vertex colorings in $\chi(G)$ colors (such H’s are called G-good). This idea, initiated in [Bu2], is a basis of a number of exact results for $R(G, H)$ for large and sparse graphs H [BG, BEFRS2, BEFRS4, Bu5, FS, EFRS4, FRS3, BEFSRGJ, BF, LR4, Biel2]. Surveys of this area appeared in [FRS5, NiRo4].

[BaLS] Graph G is Ramsey saturated if $R(G + e, G + e) > R(G, G)$ for every edge e in G. Several theorems involving cycles, cycles with chords and trees on Ramsey saturated and unsaturated graphs. Seven conjectures including one stating that almost all graphs are Ramsey unsaturated. Special cases involving cycles and Jahangir graphs were studied in [AliSur].

[Par3] Relations between some Ramsey graphs and block designs. See also [Par4].

[Bra3] $R(G, H) > h(G, d)\chi(H)$ for all nonbipartite G and almost every d-regular H, for some h unbounded in d.

[DoLL] Lower asymptotics of $R(G, H)$ depending on the average degree of G and the size of H. This continues the study initiated in [EFRS5], later much enhanced to both lower and upper bounds in [Sud3].
[LiZa1] Lower bound asymptotics of $R(G,H)$ for large dense H.

[AlKS] Discussion of a conjecture by Erdős that there exists a constant c such that $R(G,G) \leq 2^{c\sqrt{\chi(G)}}$. Proof for bipartite graphs G and progress towards the conjecture in other cases.

[Kriv] Lower bound on $R(G,K_n)$ depending on the density of subgraphs of G. This construction for $G=K_m$ produces a bound similar to the best known probabilistic lower bound by Spencer [Spe2].

[RoJa2] $R(K_2,k,G) \leq 2c\sqrt{e(G)}$ for isolate-free graphs G with $q \geq 2$ edges.

[FM] $R(W_6,W_6) = 17$ and $\chi(W_6) = 4$. This gives a counterexample $G=W_6$ to the Erdős conjecture (see [GRS]) $R(G,G) \geq R(K_{\chi(G)},K_{\chi(G)})$, since $R(4,4) = 18$.

[BE1] $R(G+K_1,H) \leq R(K_{1,R(G,H)},H)$.

[LiShen] $R(K^2+G,K^2+G) \leq 4R(G,K^2+G) - 2$.

[NiRo1] $R(K_{p+1},B_{qr}) = p(q+r-1) + 1$ for generalized books $B_{qr} = K_r + qK_1$, for all sufficiently large q.

[LR3] Bounds on $R(H+\overline{K}_n,K_n)$ for general H. Also, for fixed k and m, as $n \to \infty$, $R(K_k+\overline{K}_m,K_n) \leq (m+o(1))n^k/(\log n)^{k-1}$ [LiRZ1].

[LiTZ] Asymptotics of $R(H+\overline{K}_n,K_n)$. In particular, the order of magnitude of $R(K_{m,n},K_n)$ is $n^{m+1}/(\log n)^m$.

[LiRZ2] Let G'' be a graph obtained from G by deleting two vertices. Then $R(G,H) \leq A + B + 2 + 2\sqrt{(A^2 + AB + B^2)}/3$, where $A = R(G'',H)$ and $B = R(G,H'')$.

[BE1] Relations between the cases of G or $G+K_1$ versus H or $H+K_1$.

[HaKr] Study of cyclic graphs yielding lower bounds for Ramsey numbers. Exact formulas for paths and cycles, small complete graphs and for graphs with up to five vertices.

[Bu6] Given integer m and graphs G and H, determining whether $R(G,H) \leq m$ holds is NP-hard. Further complexity results related to Ramsey theory were presented in [Bu10].

[Scha] Ramsey arrowing is Π^2_2–complete, a rare natural example of a problem higher than NP in the polynomial hierarchy of computational complexity theory.

[] Special cases of multicolor results listed in section 5.

[] See also surveys listed in section 7.
5. Multicolor Ramsey Numbers

The only known value of a multicolor classical Ramsey number:

\[R_3(3) = R(3,3,3) = R(3,3,3; 2) = 17 \] [GG]

2 critical colorings (on 16 vertices) [KaSt, LayMa]
2 colorings on 15 vertices [Hein]
115 colorings on 14 vertices [PR1]

General upper bound, implicit in [GG]:

\[R(k_1, \ldots, k_r) \leq 2 - r + \sum_{i=1}^{r} R(k_1, \ldots, k_{i-1}, k_i - 1, k_i + 1, \ldots, k_r) \] (a)

Inequality in (a) is strict if the right hand side is even, and at least one of the terms in the summation is even. It is suspected that this upper bound is never tight for \(r \geq 3 \) and \(k_i \geq 3 \), except for \(r = k_1 = k_2 = k_3 = 3 \). However, only two cases are known to improve over (a), namely \(R_4(3) \leq 62 \) [FKR] and \(R(3,3,4) \leq 31 \) [PR1, PR2], for which (a) produces only the bounds of 66 and 34, respectively.

5.1. Bounds for classical numbers

Diagonal Cases

<table>
<thead>
<tr>
<th>(r)</th>
<th>(m)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GG</td>
<td>17</td>
<td>128</td>
<td>417</td>
<td>1070</td>
<td>3214</td>
<td>5384</td>
<td>13761</td>
</tr>
<tr>
<td>4</td>
<td>Chu1</td>
<td>51</td>
<td>634</td>
<td>3049</td>
<td>15202</td>
<td>62017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ex10</td>
<td>162</td>
<td>3416</td>
<td>26912</td>
<td>43832</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FreSw</td>
<td>538</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FreSw</td>
<td>1682</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table X. Known nontrivial lower bounds for diagonal multicolor Ramsey numbers \(R_r(m) \), with references.

The best published bounds corresponding to the entries in Table X marked by personal communications [Ex17] and [Xu] are \(415 \leq R_3(5) \), \(2721 \leq R_4(5) \) and \(26082 \leq R_5(5) \) [XXER].
The most studied and intriguing open case is

\[51 \leq R_4(3) = R(3,3,3,3) \leq 62\]

[FKR]

The construction for \(51 \leq R_4(3)\) as described in [Chu1] is correct, but be warned of a typo found by Christopher Frederick in 2003 (it makes a triangle \((31,7,28)\) in color 1 in the displayed matrix). The inequality 5.a implies \(R_4(3) \leq 66\), Folkman [Fo] in 1974 improved this bound to 65, and Sánchez-Flores [San] in 1995 proved \(R_4(3) \leq 64\).

The upper bounds in \(162 \leq R_5(3) \leq 307, 538 \leq R_6(3) \leq 1838, 1682 \leq R_7(3) \leq 12861, 128 \leq R_3(4) \leq 236\) and \(634 \leq R_4(4) \leq 6474\) are implied by 5.a (we repeat lower bounds from Table X just to easily see the ranges). All the latter and other upper bounds obtainable from known smaller bounds and 5.a can be computed with the help of a LISP program written by Kerber and Rowat [KerRo].

Off-Diagonal Cases

Three colors:

<table>
<thead>
<tr>
<th>(m)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>81</td>
<td>101</td>
<td>117</td>
<td>141</td>
<td>157</td>
<td>182</td>
<td>212</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Ka2</td>
<td>Ex2</td>
<td>Rob3</td>
<td>Ex16</td>
<td>Ex17</td>
<td>Ex17</td>
<td>Ex17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>81</td>
<td>107</td>
<td>143</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KLR</td>
<td>Ex17</td>
<td>Ex17</td>
<td>Ex17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>81</td>
<td>129</td>
<td>169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ex17</td>
<td>Ex17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table XI. Known nontrivial lower bounds for 3-color Ramsey numbers of the form \(R(3,k,m)\), with references.

In addition, the bounds \(303 \leq R(3,6,6), 609 \leq R(3,7,7)\) and \(1689 \leq R(3,9,9)\) were derived in [XXER] (used there for building other lower bounds for some diagonal cases).

The other most studied, and perhaps the only open case of a classical multicolor Ramsey number, for which we can anticipate exact evaluation in the not-too-distance future is

\[30 \leq R(3,3,4) \leq 31\]

[PR1, PR2]

In [PR1] it is conjectured that \(R(3,3,4) = 30\), and the results in [PR2] eliminate some cases which could give \(R(3,3,4) = 31\). The upper bounds in \(45 \leq R(3,3,5) \leq 57, 55 \leq R(3,4,4) \leq 79,\) and \(81 \leq R(3,4,5) \leq 160\) are implied by 5.(a) (we repeat lower bounds from the Table XI to show explicitly the current ranges).
Four colors:

\[\begin{align*}
93 \leq R(3,3,3,4) & \leq 153 & \text{[Ex16, XXER], 5.a} \\
171 \leq R(3,3,4,4) & \leq 462 & \text{[Ex16, XXER], 5.a} \\
381 \leq R(3,4,4,4) & \leq 1619 & \text{5.2.g, 5.a} \\
162 \leq R(3,3,3,5) & \leq 561 & \text{[XXER]} \\
561 \leq R(3,3,3,11) & \leq 261 & \text{[XX2, XXER]} \\
\end{align*} \]

Lower bounds for higher numbers can be obtained by using general constructive results from section 5.2 below. For example, the bounds \(261 \leq R(3,3,15)\) and \(247 \leq R(3,3,3,7)\) were not published explicitly but are implied by 5.2.c and 5.2.d, respectively.

5.2. General results for complete graphs

(b) \(R_r(3) \geq 3R_{r-1}(3) + R_{r-3}(3) - 3 \) [Chu1]

c) \(R(3, k, 1) \geq 4R(k, l - 1) - 3 \), and in general for \(r \geq 2 \) and \(k \geq 2 \)
\[R(3, k_1, ..., k_r) \geq 4R(k_1 - 1, k_2, ..., k_r) - 3 \] for \(k_1 \geq 5 \), and
\[R(k_1, 2k_2 - 1, k_3, ..., k_r) \geq 4R(k_1 - 1, k_2, ..., k_r) - 3 \] for \(k_1 \geq 5 \) [XX2, XXER]

d) \(R(3, 3, 3, k_1, ..., k_r) \geq 3R(3, 3, k_1, ..., k_r) + R(k_1, ..., k_r) - 3 \) [Rob2]

e) \(R_k(3) \leq k!(e - e^{-1} + 3)/2 \approx 2.67k! \) [Wan], which improves the classical upper bound of \(3k! \) [GRS]. For more work, mostly on asymptotics of \(R_k(3) \), see [AbbH, Fre, Chu2, ChGri, GRS, GrRo, XXER]

(f) \(R(k_1, ..., k_r) \geq S(k_1, ..., k_r) + 2 \), where \(S(k_1, ..., k_r) \) is the generalized Schur number [AbbH, Gi1, Gi2]. In particular, the special case \(k_1 = ... = k_r = 3 \) has been widely studied [Fre, FreSw, Ex10, Rob3].

g) \(R(k_1, ..., k_r) \geq L(k_1, ..., k_r) + 1 \), where \(L(k_1, ..., k_r) \) is the maximal order of any cyclic \((k_1, ..., k_r)-coloring\), which can be considered a special case of Schur partitions defining (symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established by cyclic colorings. The following recurrence can be used to derive lower bounds for higher parameters. For \(k_1 \geq 3 \)
\[L(k_1, ..., k_r, k_{r+1}) \geq (2k_{r+1} - 3)L(k_1, ..., k_r) - k_{r+1} + 2 \] [Gi2]

(h) \(R_r(m) \geq p + 1 \) and \(R_r(m + 1) \geq r(p + 1) + 1 \) if there exists a \(K_m \)-free cyclotomic \(r \)-class association scheme of order \(p \) [Mat].

(i) If the quadratic residues Paley graph \(Q_p \) of prime order \(p = 4t + 1 \) contains no \(K_k \), then \(R(s, k + 1, k + 1) \geq 4ps - 6p + 3 \) [XXER].

(j) \(R_r(m) \geq c_m(2m - 3)^r \), and some slight improvements of this bound for small values of \(m \) [AbbH, Gi1, Gi2, Song2].
(k) $R_r(pq + 1) > (R_r(p + 1) - 1)(R_r(q + 1) - 1)$ [Abb1]
(l) $R_r(pq + 1) > R_r(p + 1)(R_r(q + 1) - 1)$ for $p \geq q$ [XXER]
(m) $R(p_1q_1 + 1, \ldots, p_rq_r + 1) > (R(p_1 + 1, \ldots, p_r + 1) - 1)(R(q_1 + 1, \ldots, q_r + 1) - 1)$ [Song3]
(n) $R_{r+s}(m) > (R_r(m) - 1)(R_s(m) - 1)$ [Song2]
(o) $R(k_1, k_2, \ldots, k_r) > (R(k_1, \ldots, k_r) - 1)(R(k_{r+1}, \ldots, k_r) - 1)$ in [Song1], see [XXER].
(p) $R(k_1, k_2, \ldots, k_r) > (k_1 + 1)(R(k_2 - k_1 + 1, k_3, \ldots, k_r) - 1)$ [Rob4]
(q) Further lower bound constructions, though with more complicated assumptions, were presented in [XX2, XXER].
(r) Grolmusz [Gro11] generalized the classical constructive lower bound by Frankl and Wilson [FraWi] (section 2.3.r) to more colors and to hypergraphs [Gro13] (section 6).
(s) Exact asymptotics of a very special but important case is known, namely $R(3, 3, n) = \Theta(n^3 \text{poly log } n)$ [AlRö]. For general upper bounds and more asymptotics see in particular [Chu4, ChGra2, ChGri, GRS, GrRö].

All lower bounds in (b) through (r) above are constructive. (d) generalizes (b), (m) generalizes both (k) and (o), and (o) generalizes (n). (l) is stronger than (k). Finally observe that the construction (m) with $q_1 = \ldots = q_i = 1 = p_{i+1} = \ldots = p_r$ is the same as (o).

5.3. Cycles

Three colors

(a) The first larger paper in this area by Erdős, Faudree, Rousseau and Schelp [EFRS1] appeared in 1976. It gives several formulas and bounds for $R(C_m, C_n, C_k)$ and $R(C_m, \ldots, C_k)$ for large m. For three colors [EFRS1] includes:

$$R(C_m, C_{2p+1}, C_{2q+1}) = 4m - 3 \quad \text{for } p \geq 2, q \geq 1,$$

$$R(C_m, C_{2p}, C_{2q+1}) = 2(m + p) - 3 \quad \text{and}$$

$$R(C_m, C_{2p}, C_{2q}) = m + p + q - 2 \quad \text{for } p, q \geq 1 \text{ and large } m.$$

(b) Triple even cycles.

$R_3(C_{2m}) \geq 4m$ for all $m \geq 2$ [DzNS], see also (g) and (h) below.

$R(C_n, C_n, C_n) = (2 + o(1))n$ for even n [FiŁu, GyRSS]. A similar more general result holds for slightly off-diagonal cases [FiŁu]. The diagonal case was improved to exactly $2n$ for large n [SiqSk].

(c) Triple odd cycles.

$R_3(C_{2m+1}) = 8m + 1$ for all sufficiently large m, or equivalently

$R(C_n, C_n, C_n) = 4n - 3$ for all sufficiently large odd n [KoSS].

$R(C_n, C_n, C_n) \leq (4 + o(1))n$, with equality for odd n [Luc]. It was conjectured by Bondy and Erdős, see [Erd2], that $R(C_n, C_n, C_n) \leq 4n - 3$ for $n \geq 4$. If true, then for all odd $n \geq 5$ we have $R(C_n, C_n, C_n) = 4n - 3$.
<table>
<thead>
<tr>
<th>(m)</th>
<th>(n)</th>
<th>(k)</th>
<th>(R(C_m, C_n, C_k))</th>
<th>references</th>
<th>general results</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>17</td>
<td>GG</td>
<td>page 29</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>21</td>
<td>Sun1+/Tse3</td>
<td>5k – 4 for (k \geq 5, m = n = 3) [Sun1+]</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>7</td>
<td>26</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>31</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>Schu</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>17</td>
<td>Tse3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
<td>21</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>7</td>
<td>25</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>6</td>
<td>21</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>21</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>17</td>
<td>YR1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>21</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td>25</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td>YR2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>Sun1+</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>25</td>
<td>FSS2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>Sun</td>
<td></td>
</tr>
</tbody>
</table>

Table XII. Ramsey numbers \(R(C_m, C_n, C_k) \) for \(m, n, k \leq 7 \) and \(m = n = k = 8 \).

(Sun1+ abbreviates SunYWLX, Sun2+ abbreviates SunYLZ2,
the work in [SunYWLX] and [SunYLZ2] is independent from [Tse3])

More colors

For results on \(R_k(C_3) = R_k(K_3) \) see sections 5.1, 5.2.

\[
R_4(C_4) = 18 \quad \text{[Ex2] [SunYLZ1]}
\]
\[
18 \leq R_4(C_6) \quad \text{[SunYJLS]}
\]
\[
27 \leq R_5(C_4) \leq 29 \quad \text{[LaWo1]}
\]
\[
R_5(C_6) = 26 \quad \text{[SunYJLS] [SunYW]}
\]
Formulas for $R(C_m, C_n, C_k, C_l)$ for large m [EFRS1].

(e) $R_k(C_4) \leq k^2 + k + 1$ for all $k \geq 1$, $R_k(C_4) \geq k^2 + k - 2$ for all $k - 1$ which is a prime power [Ir, Chu2, ChGra1], and $R_k(C_4) \geq k^2 + 2$ for odd prime power k [LaWo1]. The latter was extended to any prime power k in [Ling, LaMu].

(f) $R_k(C_{2m}) \geq (k + 1)m$ for odd k and $m \geq 2$, and $R_k(C_{2m}) \geq (k + 1)m - 1$ for even k and $m \geq 2$ [DzNS].

(g) $R_k(C_{2m}) \geq 2(k - 1)(m - 1) + 2$ [SunYXL].

(h) $R_k(C_{2m}) \geq k^2 + 2m - k$ for $2m \geq k + 1$ and prime power k [SunYJLS].

(i) $R_k(C_{2m}) = \Theta(k^{m/m - 1})$ for fixed $m = 2, 3$ and 5 [LiLih].

(j) $R_k(C_{2m}) \leq 201km$ for $k \leq 10^m/201m$ [EG].

(k) $R_k(C_5) \leq \sqrt{18k}$! [Li3].

(l) $2^{k}m < R_k(C_{2m+1}) \leq (k + 2)!(2m + 1)$ [BoEr].

A better upper bound $R_k(C_{2m+1}) < 2(k + 2)!m$ was obtained in [EG].

(m) Asymptotic bounds for $R_k(C_n)$ [Bu1, GRS, ChGra2, LiLih].

(n) Survey of multicolor cycle cases [Li2].

Cycles versus other graphs

The bounds for the following six cases were established in [XSR1]:

- $21 \leq R(C_3, C_4, C_4, C_4) \leq 27$ [XuR2]
- $28 \leq R(C_3, C_3, C_4, C_4) \leq 36$ [XuR2]
- $49 \leq R(C_3, C_3, C_3, C_4) \leq 56$ [5.6.n]

- $R(K_{1,3}, C_4, K_4) = 16$ [KM2]
- $R(C_4, C_4, C_4, T) = 16$ for $T = P_4$ and $T = K_{1,3}$ [ExRe]

(o) Study of $R(C_n, K_{t_1}, \cdots, K_{t_k})$ and $R(C_n, K_{t_1, s_1}, \cdots, K_{t_k, s_k})$ for large n [EFRS1].

(p) Study of asymptotics for $R(C_m, \ldots, C_m, K_n)$, in particular for fixed number of colors we have $R(C_4, C_4, \ldots, C_4, K_n) = \Theta(n^2/\log^2 n)$ [AlRö].

(q) Study of asymptotics for $R(C_{2m}, C_{2m}, K_n)$ for fixed m [AlRö, ShiuLL], in particular $R(C_4, C_4, K_n) = \Theta(n^2 \text{ poly log } n)$ [AlRö].

(r) Monotone paths and cycles [Lef].

(s) For combinations of C_3 and K_n see sections 2, 5.1 and 5.2.
5.4. Paths, paths versus other graphs

In 2007, Gyárfás, Ruszinkó, Sárközy and Szemerédi [GyRSS] established that for all sufficiently large n we have

$$R(P_n, P_n, P_n) = 2n - 2 + n \text{ mod } 2.$$

Three color path and path-cycle cases

(a) $R(P_m, P_n, P_k) = m + \lceil n/2 \rceil + \lceil k/2 \rceil - 2$ for $m \geq 6(n + k)^2$ [FS2]. It holds asymptotically for $m \geq n \geq k$ with an extra term $o(m)$ [FiŁu]. $R_3(P_4) = 6$ [Ir], for other combinations of $3 \leq m, n, k \leq 4$ the value is 5 [AKM].

(b) $R(P_3, P_3, C_m) = 5, 6, 6, 7$ for $m = 3, 4$ [AKM], 5, and
\begin{align*}
R(P_3, P_3, C_m) &= m \text{ for } m \geq 6 \text{ [Dzi].} \\
R(P_3, P_4, C_m) &= 7 \text{ for } m = 3, 4 \text{ [AKM] and 5, and} \\
R(P_3, P_4, C_m) &= m + 1 \text{ for } m \geq 6 \text{ [Dzi].} \\
R(P_4, P_4, C_m) &= 9, 7, 9 \text{ for } m = 3, 4 \text{ [AKM] and 5 [Dzi], and} \\
R(P_4, P_4, C_m) &= m + 2 \text{ for } m \geq 6 \text{ [DzKP].}
\end{align*}

(c) $R(P_3, P_5, C_m) = 9, 7, 9, 7, 9$ for $m = 3, 4, 5, 6, 7$ [Dzi, DzFi2], and
\begin{align*}
R(P_3, P_5, C_m) &= m + 1 \text{ for } m \geq 8 \text{ [DzKP].} \\
A \text{ table of } R(P_3, P_k, C_m) \text{ for all } 3 \leq k \leq 8 \text{ and } 3 \leq m \leq 9 \text{ [DzFi2].}
\end{align*}

(d) $R(P_4, P_5, C_m) = 11, 7, 11, 11, 11, 11, 11, and m + 2 \text{ for } m = 3, 4, 5, 7 \text{ and } m \geq 23,$ and
\begin{align*}
R(P_4, P_6, C_m) &= 13, 8, 13, 13, and m + 3 \text{ for } m = 3, 4, 5, 7 \text{ and } m \geq 18 \text{ [ShaXSP].}
\end{align*}

(e) $R(P_n, P_n, C_4) = n + 1 \text{ for } n \geq 6,$
\begin{align*}
R(P_m, P_n, C_k) &= 2n + 2\lceil m/2 \rceil - 3 \text{ for large } n \text{ and odd } m \geq 3, \text{ in particular} \\
R(P_3, P_n, C_k) &= 2n - 1, \\
R(P_4, P_n, C_k) &= 2n + 1 \text{ for odd } m \geq 3 \text{ and } k \geq m \text{ [DzFi2].}
\end{align*}

(f) $R(P_3, C_3, C_3) = 11$ [BE3], $R(P_3, C_4, C_4) = 8$ [AKM], $R(P_3, C_6, C_6) = 9$ [Dzi],
\begin{align*}
R(P_3, C_m, C_m) &= R(C_m, C_m) = 2m - 1 \text{ for odd } m \geq 5 \text{ [DzKP] (for } m = 5, 7 \text{ [Dzi]).} \\
R(P_3, C_3, C_4) &= 8 \text{ [AKM], } R(P_3, C_3, C_5) = 9, \ R(P_3, C_3, C_6) = 11, \\
R(P_3, C_3, C_7) &= 13, \ R(P_3, C_4, C_5) = 8, \ R(P_3, C_4, C_6) = 8, \\
R(P_3, C_4, C_7) &= 8, \ R(P_3, C_5, C_6) = 11, \ R(P_3, C_5, C_7) = 13 \text{ and} \\
R(P_3, C_6, C_7) &= 11 \text{ [Dzi].}
\end{align*}

(g) Formulas for $R(pP_3, qP_3, rP_3)$ and $R(pP_4, qP_4, rP_4)$ [Scob].

(h) $R(P_3, K_4 - e, K_4 - e) = 11$ [Ex7]. All colorings (which can be any color neighborhood for the open case $R_3(K_4 - e)$, see section 5.5) were found in [Piw2].
More colors

(i) \(R_k(P_3) = k + 1 + (k \mod 2) \), \(R_k(2P_2) = k + 3 \) for all \(k \geq 1 \) [Ir].

(j) \(R_k(P_4) = 2k + c_k \) for all \(k \) and some \(0 \leq c_k \leq 2 \). If \(k \) is not divisible by 3 then \(c_k = 3 - k \mod 3 \) [Ir]. Wallis [Wall] showed \(R_6(P_4) = 13 \), which already implied \(R_{3t}(P_4) = 6t + 1 \), for all \(t \geq 2 \). Independently, the case \(R_k(P_4) \) for \(k \neq 3m \) was completed by Lindström in [Lind], and later Bierbrauer proved \(R_{3m}(P_4) = 2 \cdot 3^m + 1 \) for all \(m > 1 \). \(R_3(P_4) = 6 \) [Ir].

(k) Formula for \(R(P_{n_1}, \ldots, P_{n_t}) \) for large \(n_1 \) [FS2].

(l) Formula for \(R(n_1P_2, \ldots, n_kP_2) \), in particular \(R(nP_2nP_2nP_2) = 4n - 2 \) [CL1].

(m) Cockayne and Lorimer [CL1] found the exact formula for \(R(n_1P_2, \ldots, n_kP_2) \), and later Lorimer [Lor] extended it to a more general case of \(R(K_m, n_1P_2, \ldots, n_kP_2) \). More general cases of the latter, with multiple copies of the complete graph, stars and forests, were studied in [Stahl, LorSe, LorSo, GyRSS].

(n) Multicolor cases for one large path or cycle involving small paths, cycles, complete and complete bipartite graphs [EFRS1].

(o) See section 7.2, especially [AKM], for a number of cases for triples of small graphs.

5.5. Special cases

\[
R_3(K_3 + e) = R_3(K_3) = 17 \quad \text{[YR3, AKM]}
\]

\[
28 \leq R_3(K_4 - e) \leq 30 \quad \text{[Ex7] [Piw2]}
\]

\[
R(K_4 - e, K_4 - e, P_3) = 11 \quad \text{[Ex7]}
\]

All colorings for \((K_4 - e, K_4 - e, P_3)\) were found in [Piw2].

5.6. Other general results

(a) Formulas for \(R_k(G) \), where \(G \) is one of the graphs \(P_3, 2K_2 \) and \(K_{1,3} \) for all \(k \), and for \(P_4 \) if \(k \) is not divisible by 3 [Ir]. For some details see section 5.4.j.

(b) \(tk^2 + 1 \leq R_k(K_{2,t+1}) \leq tk^2 + k + 2 \), where the upper bound is general, and the lower bound holds when both \(t \) and \(k \) are prime powers [ChGra1, LaMu].

(c) \((m - 1) \left\lfloor (k + 1)/2 \right\rfloor < R_k(T_m) \leq 2km + 1 \) for any tree \(T_m \) with \(m \) edges [EG], see also [GRS]. The lower bound can be improved for special large \(k \) [EG, GRS]. The upper bound was improved to \(R_k(T_m) < (m - 1)(k + \sqrt{k(k - 1)}) + 2 \) in [GyTu].

(d) \(k(\sqrt{m} - 1)/2 < R_k(F_m) < 4km \) for any forest \(F_m \) with \(m \) edges [EG], see [GRS]. See also pointers in items (u) and (v) below.

(e) \(R(m_1G_1, \ldots, m_kG_k) \leq R(G_1, \ldots, G_k) + \sum_{i=1}^{k} n(G_i)(m_i - 1) \), exercise 8.3.28 in [West].
(f) Formula for \(R(S_1, \ldots, S_k) \), where \(S_i \)'s are arbitrary stars [BuRo1], see also [GauST].

(g) Formula for \(R(S_1, \ldots, S_k, K_n) \), where \(S_i \)'s are arbitrary stars [Jac].

(h) Formula for \(R(S_1, \ldots, S_k, nK_2) \), where \(S_i \)'s are arbitrary stars [CL2].

(i) Formula for \(R(S_1, \ldots, S_k, T) \), where \(S_i \)'s are stars and \(T \) is a tree [ZZ1].

(j) Formulas for \(R(S_1, \ldots, S_k) \) where each \(S_i \)'s is a star or \(m_iK_2 \) [ZZ2, EG].

(k) Study of the case \(R(K_m, nP_2, \ldots, nK_2) \) [Lor]. More general cases, with multiple copies of the complete graph, stars and forests, were investigated in [Stahl, LorSe, LorSo, GyRSS]. See also surveys listed in section 7.

(l) If \(G \) is connected and \(R(K_k, G) = (k-1)(n(G)-1) + 1 \), in particular if \(G \) is any tree, then \(R(K_k, \ldots, K_k, G) = (R(k_1, \ldots, k_r) - 1)(n(G)-1) + 1 \) [BE3]. A generalization for connected \(G_1, \ldots, G_n \) in place of \(G \) appeared in [Jac].

(m) If \(F, G, H \) are connected graphs then \(R(F, G, H) \geq (R(F, G) - 1)(\chi(H) - 1) + \min\{R(F, G), s(H)\} \), where \(s(G) \) is the chromatic surplus of \(G \) (see item [Bu2] in section 4.16). This leads to several formulas and bounds for \(F \) and \(G \) being stars and/or trees when \(H = K_n \) [ShiuLL].

(n) \(R(K_{k_1}, \ldots, K_{k_r}, G_1, \ldots, G_s) \geq (R(k_1, \ldots, k_r) - 1)(R(G_1, \ldots, G_s) - 1) + 1 \) for arbitrary graphs \(G_1, \ldots, G_s \) [Bev]. This generalizes 5.2.o.

(o) Constructive bound \(R(G_1, \ldots, G_{t+1}) \geq t^n + 1 \) for decompositions of \(K_{t^n} \) [LaWo1, LaWo2].

(p) \(R(G_1, \ldots, G_k) \leq 32\Delta k\Delta n \), where \(n \geq n(G_i) \) and \(\Delta \geq \Delta(G_i) \) for all \(1 \leq i \leq k \) [FoxSu1].

(q) \(R(G_1, \ldots, G_k) \leq k^{2k\Delta q} n \), where \(q \geq \chi(G_i) \) for all \(1 \leq i \leq k \) [FoxSu1].

(r) Bounds on \(R_k(G) \) for unicyclic graphs \(G \) of odd girth. Some exact values for special graphs \(G \), for \(k = 3 \) and \(k = 4 \) [KrRod].

(s) \(R_k(G) > (sk e(G)/n(g))^1/n(G) \), where \(s \) is the number of automorphisms of \(G \) [CH3]. Other general bounds for \(R_k(G) \) [CH3, Par6].

(t) Bounds on \(R_k(K_{s,t}) \), in particular for \(K_{2,2} = C_4 \) and \(K_{2,t} \) [ChGra1, AFM]. Asymptotics of \(R_k(K_{s,t}) \) for fixed \(k \) and \(s \) [LiTZ]. Upper bounds on \(R_k(K_{s,t}) \) [SunLi].

(u) Bounds on \(R_k(G) \) for trees, forests, stars and cycles [Bu1].

(v) Bounds for trees \(R_k(T) \) and forests \(R_k(F) \) [EG, GRS, BB, GyTu, Bra1, Bra2, SwPr].

(x) Study of \(R(G_1, \ldots, G_k, G) \) for large sparse \(G \) [EFRS1, Bu3].

(y) Study of asymptotics for \(R(C_n, \ldots, C_n, K_m) \) [AlRö]. See also sections 5.3.pq.

(z) See section 7.2, especially [AKM], for a number of cases for other small graphs, similar to those listed in section 5.3. See also surveys listed in section 7.
6. Hypergraph Numbers

The only known value of a classical Ramsey number for hypergraphs:

\[R(4,4; 3) = 13 \]

more than 200000 critical colorings \[\text{[MR1]} \]

The computer evaluation of \(R(4,4; 3) \) in 1991 consisted of an improvement of the upper bound from 15 to 13. This result followed an extensive theoretical study of this number by several authors \[\text{[Gi4, Isb1, Sid1]} \].

Special hypergraph cases

\[33 \leq R(4, 5; 3) \quad \text{[Ex13]} \]
\[38 \leq R(4, 6; 3) \quad \text{[HuSo+]} \]
\[65 \leq R(5, 5; 3) \quad \text{[Ea1]} \]
\[56 \leq R(4, 4, 4; 3) \quad \text{[Ex8]} \]
\[34 \leq R(5, 5; 4) \quad \text{[Ex11]} \]
\[R(K_4 - t, K_4 - t; 3) = 7 \quad \text{[Ea2]} \]
\[R(K_4 - t, K_4; 3) = 8 \quad \text{[Sob, Ex1, MR1]} \]
\[14 \leq R(K_4 - t, K_4; 3) \quad \text{[Ex1]} \]
\[13 \leq R(K_4 - t, K_4 - t, K_4 - t; 3) \leq 17 \quad \text{[Ex1]} \quad \text{[Ea1]} \]

(a) The first bound on \(R(4, 5; 3) \geq 24 \) was obtained by Isbell \[\text{[Isb2]} \]. Shastri \[\text{[Shas]} \] gave a weak bound \(R(5, 5; 4) \geq 19 \) (now 34 in \[\text{[Ex11]} \]), nevertheless his lemmas, the stepping-up lemmas by Erdős and Hajnal (see \[\text{[GRS, GrRö]} \], also 6.j below), and others in \[\text{[Ka3, Abb2, GRS, GrRö, HuSo, SoYL]} \] can be used to derive better lower bounds for higher numbers.

(b) Several lower bound constructions for 3-uniform hypergraphs were presented in \[\text{[HuSo]} \]. Study of lower bounds on \(R(p, q; 4) \) can be found in \[\text{[Song3]} \] and \[\text{[SoYL, Song4]} \] (the latter two papers are almost the same in contents). Most lower bounds in these papers can be easily improved by using the same techniques, but starting with better constructions for small parameters as listed above.

(c) \[
R(p, q; 4) \geq 2R(p-1, q; 4) - 1 \quad \text{for} \ p, q > 4, \text{and}
R(p, q; 4) \geq (p-1)R(p-1, q; 4) - p + 2 \quad \text{for} \ p \geq 5, q \geq 7 \quad \text{[SoYL]}.
\]

General results for 3-uniform hypergraphs

(d) \(2^{cn^2} < R(n, n; 3) < 2^{2^n} \), Erdős, Hajnal and Rado (see \[\text{[ChGra2]} \] p. 30).

(e) For some \(a, b \) the numbers \(R(m, a, b; 3) \) are at least exponential in \(m \) \[\text{[AbbS]} \].

(f) \(R(G, G; 3) \leq c \cdot n(H) \) for some constant \(c \) depending only on the maximum degree of a 3-uniform hypergraph \(H \) \[\text{[CooFKO, NaORS]} \]. Similar results were proved for \(r \)-uniform hypergraphs in \[\text{[KüCFO, Ishi, ConFS3]} \], see (n) below.
(g) A loose 3-uniform cycle C_n on $[n]$ is the set of triples $\{123, 345, 567, \ldots, (n-1)n1\}$ (note that n must be even). For such loose cycles we have $R(C_{4k}^3, C_{4k}^3; 3) > 5k - 2$ and $R(C_{4k+2}^3, C_{4k+2}^3; 3) > 5k + 1$, and asymptotically these lower bounds are tight [HaŁP1+]. Generalizations to r-uniform hypergraphs and graphs other than cycles [GySS].

(h) Study of the cases for 3-uniform tight cycles and paths in which consecutive edges share two points. For tight cycles, $R(C_{3k}^3, C_{3k}^3; 3) \sim 4k$ and $R(C_{3k+i}^3, C_{3k+i}^3; 3) \sim 6k$ for $i = 1$ or 2, and for tight paths $R(P_k^3, P_k^3; 3) \sim 4k/3$ [HaŁP2+]. Related results in [PoRRS].

(i) Lower and upper asymptotics of $R(s, n; k)$ for fixed s, and lower bound on $R_3(n; 3)$ [ConFS1]. Upper bounds on $R_k(H; 3)$ for complete multipartite 3-uniform hypergraphs H, a 4-color case, and some other general and special cases [ConFS2, ConFS3].

General results for hypergraphs

(j) If $R(n, n; k) > m$ then $R(2n + k - 4, 2n + k - 4; k + 1) > 2^m$. This is the so-called stepping-up lemma, usually credited to Erdős and Hajnal.

(k) Lower bounds on $R_k(n; r)$ are discussed in [AbbW, DLR].

(l) General lower bounds for large number of colors were given in an early paper by Hirschfeld [Hir], and some of them were later improved in [AbbL].

(m) Exact results for large 2-loose cycles (generalizing (g) above) and 2- and 3-color cases for all r-uniform diamond matchings [GySS].

(n) $R(H, H; r) \leq c \cdot n(H)^{1+\varepsilon}$, for some constant $c = c(\Delta, r, \varepsilon)$ depending only on the maximum degree of H, r and $\varepsilon > 0$ [KoRö3]. The proofs of the linear bound $c \cdot n(H)$ were obtained independently in [KüCFO] and [Ishi], the latter including the multicolor case, and then without regularity lemma in [ConFS3]. More discussion of lower and upper bounds for various cases can be found in [ConFS1, ConFS2, ConFS3].

(o) Let $H^{(r)}(s, t)$ be the complete r-partite r-uniform hypergraph with $r - 2$ parts of size 1, one part of size s, and one part of size t (for example, for $r = 2$ it is the same as $K_{s, t}$). For the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that

$$tk^2 - k + 1 \leq R_k(H^{(r)}(2, t+1); r) \leq tk^2 + k + r,$$

where the lower bound holds when both t and k are prime powers. For the general case of $H^{(r)}(s, t)$, more bounds are presented in [LaMu].

(p) Grollmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wilson [FraWi] (section 2.3.s) to more colors and to hypergraphs [Grol3].

(q) Lower and upper asymptotics, and other theoretical results on hypergraph numbers are gathered in [GrRö, GRS, ConFS1, ConFS2, ConFS3].
7. Cumulative Data and Surveys

7.1. Cumulative data for two colors

[CH1] \(R(G,G) \) for all graphs \(G \) without isolates on at most 4 vertices.

[CH2] \(R(G,H) \) for all graphs \(G \) and \(H \) without isolates on at most 4 vertices.

[Clan] \(R(G,H) \) for all graphs \(G \) on at most 4 vertices and \(H \) on 5 vertices, except five entries (now all solved, see section 4.13). All critical colorings for the isolate-free graphs \(G \) and \(H \) studied in [Clan] were found in [He4].

[Bu4] \(R(G,G) \) for all graphs \(G \) without isolates and with at most 6 edges.

[He1] \(R(G,G) \) for all graphs \(G \) without isolates and with at most 7 edges.

[HaMe2] \(R(G,G) \) for all graphs \(G \) on 5 vertices and with 7 or 8 edges.

[He2] \(R(G,H) \) for all graphs \(G \) and \(H \) on 5 vertices without isolates, except 7 entries (3 still open, see 4.13 and the paragraph at the end of this section).

[HoMe] \(R(G,H) \) for \(G=K_{1,3}+e \) and \(G=K_4-e \) versus all connected graphs \(H \) on 6 vertices, except \(R(K_4-e,K_6) \). The result \(R(K_4-e,K_6)=21 \) was claimed by McNamara [McN, unpublished].

[FRS4] \(R(G,T) \) for all connected graphs \(G \) with \(n(G) \leq 5 \), and almost all trees \(T \).

[FRS1] \(R(K_3,G) \) for all connected graphs \(G \) on 6 vertices.

[Jin] \(R(K_3,G) \) for all connected graphs \(G \) on 7 vertices. Some errors in [Jin] were found [SchSch1].

[Zeng] Formulas for \(R(nK_3,mG) \) for all \(G \) of order 4 without isolates.

[Brin] \(R(K_3,G) \) for all connected graphs \(G \) on at most 8 vertices. The numbers for \(K_3 \) versus sets of graphs with fixed number of edges, on at most 8 vertices, were presented in [KM1].

[BBH1] \(R(K_3,G) \) for all connected graphs \(G \) on 9 vertices. See also [BBH2].

[JR3] \(R(C_4,G) \) for all graphs \(G \) on at most 6 vertices.

[JR4] \(R(C_5,G) \) for all graphs \(G \) on at most 6 vertices.

[JR2] \(R(C_6,G) \) for all graphs \(G \) on at most 5 vertices.

[LoM3] \(R(K_{2,n},K_{2,m}) \) for all \(2 \leq n,m \leq 10 \) except 8 cases, for which lower and upper bounds are given. Further data for other complete bipartite graphs in section 3.2 and [LoMe4].

[HaKr] All best lower bounds up to 102 from cyclic graphs. Formulas for best cyclic lower bounds for paths and cycles, small complete graphs and for graphs with up to five vertices.

Chvátal and Harary [CH1, CH2] formulated several simple but very useful observations how to discover values of some numbers. All five missing entries in the tables of Clancy [Clan] have been solved (section 4.13). Out of 7 open cases in [He2] 4 have been solved, including
The still open 3 cases are for \(K_5 \) versus the graphs \(K_5 \) (section 2.1), \(K_5 - e \) (section 3.1), and \(K_5 - P_3 \) (section 4.13).

7.2. Cumulative data for three colors

- \[R_3(G) \] for all graphs \(G \) with at most 4 edges and no isolates.
- \[R_3(G) \] for all graphs \(G \) with 5 edges and no isolates, except \(K_4 - e \).
- \[R_3(G) \] for all graphs \(G \) with 6 edges and no isolates, except 10 cases.
- \(R(F, G, H) \) for most triples of isolate-free graphs with at most 4 vertices. Some of the missing cases completed in [KM2].
- \(R(P_3, P_k, C_m) \) for all \(3 \leq k \leq 8 \) and \(3 \leq m \leq 9 \).

7.3. Surveys

- [Har2] Summary of progress by Frank Harary (1981)
- [JGT] Special volume of the Journal of Graph Theory (1983)
- [FRS5] Survey by Faudree, Rousseau and Schelp of graph goodness results, i.e. conditions for the formula \(R(G, H) = (\chi(G) - 1)(n(H) - 1) + s(G) \) (1991)
- [Chu4] Among 114 open problems and conjectures of Paul Erdős, presented and commented by F. R. K. Chung, 31 are concerned directly with Ramsey numbers. 216 references are given (1997). An extended version of this work was prepared jointly with R. L. Graham [ChGra2]. (1998)
- [West] An extensive chapter on Ramsey theory in the very popular student textbook and researcher’s manual of graph theory (2001)
The surveys by S. A. Burr [Bu1] and T. D. Parsons [Par6] contain extensive chapters on
general exact results in graph Ramsey theory. F. Harary presented the state of the theory in
1981 in [Har2], where he also gathered many references including seven to other early sur-
veys of this area. More than two decades ago, Chung and Grinstead in their survey paper
[ChGri] gave less data than in this work, but included a broad discussion of different
methods used in Ramsey computations in the classical case. S. A. Burr, one of the most
experienced researchers in Ramsey graph theory, formulated in [Bu7] seven conjectures on
Ramsey numbers for sufficiently large and sparse graphs, and reviewed the evidence for them
found in the literature. Three of them have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Neš, Chu4, ChGra2], though
these focus on asymptotic theory not on the numbers themselves. A very welcome addition is
the 2004 compilation of applications of Ramsey theory by Rosta [Ros2]. This survey could
not be complete without recommending special volumes of the Journal of Graph Theory
[JGT, 1983] and Combinatorics, Probability and Computing [CoPC, 2003], which, besides a
number of research papers, include historical notes and present to us Frank P. Ramsey (1903-
1930) as a person. Finally, read the newest book by A. Soifer [Soi, 2009] on history and
results in Ramsey theory!

8. Concluding Remarks

This compilation does not include information on numerous variations of Ramsey
numbers, nor related topics, like size Ramsey numbers, zero-sum Ramsey numbers, irredund-
ant Ramsey numbers, induced Ramsey numbers, local Ramsey numbers, connected Ramsey
numbers, chromatic Ramsey numbers, avoiding sets of graphs in some colors, coloring graphs
other than complete, or the so called Ramsey multiplicities. Interested readers can find such
information in the surveys listed in section 7 here.

Ramsey@Home [RaHo] is a distributed computing project at the University of
Wisconsin-Oshkosh designed to find new lower bounds for various Ramsey numbers. Join and
help! Readers may be interested in knowing that the US patent 6965854 B2 issued on
November 15, 2005 claims a method of using Ramsey numbers in "Methods, Systems and
Computer Program Products for Screening Simulated Traffic for Randomness". Check the ori-
ginal document at http://www.uspto.gov/patft if you wish to find out whether your usage of
Ramsey numbers is covered by this patent.