6.1. \(X \) is a universal covering space of itself, hence there is a homomorphism \(\varphi : (X, \text{id}_X) \to (\tilde{X}, p) \), which implies that \(p \varphi = \text{id}_X \). Then \(p \) is injective hence a homeomorphism.

6.2. \(\pi(S^1) \cong \mathbb{Z} \) is abelian, whose subgroups are \(n\mathbb{Z}, n \geq 1 \) and the trivial subgroup. The corresponding covering spaces are the \(n \)-fold cover \(S^1 \to S^1, z \mapsto z^n \) and the universal cover \(\mathbb{R} \to S^1, t \mapsto e^{2\pi it} \).

\[\pi(P) \cong \mathbb{Z}/2\mathbb{Z}, \] whose subgroups are itself and the trivial subgroup. The corresponding covering spaces are \(\text{id}_P : P \to P \) and the 2-fold cover \(S^2 \to P \) which identifies the antipodes of \(S^2 \).

The set \(\{(x, y) \in \mathbb{R}^2 : 1 \leq x^2 + y^2 \leq 4\} \) is homeomorphic to \(X := [1, 2] \times S^1 \). Note that \([1, 2]\) is simply connected. Therefore the covering spaces of \(X \) are of the form \(([1, 2] \times Y, \text{id} \times p) \), where \((Y, p)\) is a covering space of \(S^1 \).

6.4. Let \(U \subset \mathbb{Z} \) be an elementary neighborhood for the covering space \((X, q)\), and let \(V \) be a path component of \(r^{-1}(U) \). Let \(W \) be a path component of \(p^{-1}(V) \). Then \(p|_W : W \to V \) is a covering space. But \(W \) is a path connected subset of \(q^{-1}(U) \), hence it is mapped homeomorphically by \(q \) into \(U \). It follows that \(p|_W : W \to V \) is injective, hence a homeomorphism. If \(W' \) is the path component of \(q^{-1}(U) \) containing \(W \), then \(p(W') \subset V \), which implies that \(r : V \to U \) is surjective. In fact \(W' = W \). Therefore \(r = q_W \circ (p|_W)^{-1} : V \to W \) is a homeomorphism.

6.5. Let \((\tilde{X}, p)\) be a universal covering space of \(X \). Then \(\tilde{X} \) is also a universal covering space of \(X_1 \), hence also a covering space of \(X_2 \). The assertion now follows from Exercise 6.4.

7.2. We note that if \(\pi(X) \) is abelian, then \(N[p_* \pi(\tilde{X})] = \pi(X) \) hence \(A(\tilde{X}, p) \cong \pi(X)/p_* \pi(\tilde{X}) \).

Example 2.2: \(A(\tilde{X}) = \mathbb{Z}/n\mathbb{Z} \).
Example 2.4: For the covering space $\tilde{X} = \mathbb{R} \times \mathbb{R}$ which is simply connected, one has $A(\tilde{X},p) \cong \pi(T) \cong \mathbb{Z}^2$. For $\tilde{X} = \mathbb{R} \times S^1$, one has $A(\tilde{X},p) \cong \pi(T)/\pi(S^1) \cong \mathbb{Z}^2/\mathbb{Z} \cong \mathbb{Z}$, where the subgroup $\pi(S^1)$ of $\pi(T)$ means the second factor of the direct product $\pi(T) \cong \pi(S^1) \times \pi(S^1)$.

Example 2.8: \mathbb{C} is simply connected, hence $A(\mathbb{C},\exp) \cong \pi(\mathbb{C}^\times) \cong \mathbb{Z}$.

Example 2.9: $A(\mathbb{C}^\times, p_n) = \mathbb{Z}/n\mathbb{Z}$.