ALGEBRAIC TOPOLOGY EXERCISE SOLUTIONS: CHAPTER VIII

Comments can be sent to maliu@zju.edu.cn

2.1 Consider the map $F(x, t) = (1 - t)x + tx/|x|$.

2.2. Fix the embedding $\mathbb{R}^n \hookrightarrow \mathbb{R}^{n+1}$, $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0)$. Let P be the north pole of S^n. For $x \in S^n - \{P\}$, let ℓ_x be the line passing through P and x. Consider the map $f : S^n - \{P\} \rightarrow \mathbb{R}^n$ such that $f(x)$ is the intersection of ℓ_x with the hyperplane $x_{n+1} = 0$. Then f is a homeomorphism, which is called the stereographic projection.

2.3. (a) By Exercise 2.2, their 1-point compactifications are S^m and S^n, which are not homeomorphic because they have different homology groups. Hence \mathbb{R}^m and \mathbb{R}^n cannot be homeomorphic either.

(b) The complement of a point in \mathbb{R}^m has the same homotopy type as S^{m-1}, hence it cannot be homeomorphic to the complement of a point in \mathbb{R}^n.

2.4. If x is an interior point, then $E^n - \{x\}$ has the same homotopy type as S^{n-1}; if x is a boundary point, then $E^n - \{x\}$ is contractible. Because $E^n - \{x\}$ and $E^n - \{h(x)\}$ are homeomorphic, h must map the boundary S^{n-1} onto itself.

2.5. If f is not onto, then f_* maps $\tilde{H}_n(S^n)$ into $\tilde{H}_n(S^n - \{x\}) \cong \tilde{H}_n(\mathbb{R}^n) = 0$ for some $x \in S^n$. Hence $f_* = 0$ so that $\deg f = 0$.

2.6. By excision, $H_n(X, X - \{x\}) \cong H_n(N, N - \{x\})$. Since N is contractible, the long homology exact sequence for $(N, N - \{x\})$ shows that $H_n(N, N - \{x\}) \cong \tilde{H}_{n-1}(N - \{x\}) \cong \tilde{H}_{n-1}(B)$, where the last isomorphism follows from the assumption that B is a deformation retract of $N - \{x\}$.

2.7. Using Exercise 2.6, it is easy to see that

$$H_q(E^n, E^n - \{x\}) \cong \tilde{H}_{q-1}(S^{n-1}) \cong \begin{cases} \mathbb{Z}, & q = n \\ 0, & q \neq n \end{cases}$$

if x is an interior point, and $H_q(E^n, E^n - \{x\}) \cong \tilde{H}_{q-1}(S^{n-1} - \{pt\}) \cong \tilde{H}_{q-1}(\mathbb{R}^{n-1}) = 0$ if x is a boundary point.

To prove Exercise 2.4, if $h : E^n \rightarrow E^n$ is a homeomorphism, then E^n has the same local homology groups at x and $h(x)$. Hence our computation shows that h must map the boundary S^{n-1} onto itself.
2.8. The \(q \)-dimensional local homology groups of an \(n \)-dimensional manifold are isomorphic to \(\tilde{H}_{q-1}(S^{n-1}) \), which cannot be equal to \(\tilde{H}_{q-1}(S^{m-1}) \) for all \(q \) unless \(m = n \).

2.9. Denote \(Y = \{ x \in X \mid H_2(X, X - \{ x \}) = 0 \} \). Then \(Y \) is homeomorphic to \(S^1 \) if \(X \) is a Mobius strip; but \(Y \) is homeomorphic to a disjoint union of two \(S^1 \) if \(X \) is the annulus. Hence Mobius strip and annulus are not homeomorphic.

3.1. If \(k = 0 \) then \(f \) is constant hence \(\deg f = 0 \). If \(k \neq 0 \), subdivide \(S^1 \) into \(|k| \) short arcs with equal length. Similar to Example 3.2 one can show that \(\deg f = k \).

3.2. We just saw in Exercise 3.1 that for any \(k \in \mathbb{Z} \) there exists a continuous map \(f : S^1 \to S^1 \) of degree \(k \). Then \(\Sigma^{n-1} f : S^n \to S^n \) is also of degree \(k \).

3.3. Using stereographic projection, \(V_n \overset{\text{def}}{=} \{ z : |z| > n \} \cup \{ \infty \}, n = 1, 2, \ldots \), form a base of neighborhoods of \(\infty \). Since \(f \) is of positive degree, \(f(r) \to +\infty \) as \(r \in \mathbb{R} \) tends to \(+\infty \). Hence for each \(n \) we have \(\bar{f}^{-1}(V_n) \supset V_m \) for \(m \) large enough. This shows the continuity of \(\bar{f} \) at \(\infty \).

3.4. The stereographic projection maps the upper semisphere onto \(\{ z \in \mathbb{C} : |z| \geq 1 \} \cup \{ \infty \} \), and maps the lower semisphere onto \(\{ z \in \mathbb{C} : |z| \leq 1 \} \). Thus we see that \(\bar{f} : S^2 \to S^2 \) preserves the upper and lower semisphere of \(S^2 \), and its restriction to \(S^1 \) coincides with the map \(f_1 : S^1 \to S^1, z \mapsto z^k \).

Similar to the proof of \(\deg \Sigma f = \deg f \), by the above observations we have a commutative diagram

\[
\begin{array}{ccc}
H_2(S^2) & \xrightarrow{\varphi} & H_1(S^1) \\
\downarrow f_* & & \downarrow f_* \\
H_2(S^2) & \xrightarrow{\varphi} & H_1(S^1)
\end{array}
\]

where \(\varphi \) is the isomorphism constructed in the proof of the induction \(\tilde{H}_{i+1}(S^{n+1}) \cong \tilde{H}_i(S^n) \). It follows that \(\deg \bar{f} = \deg f_1 = k \), where the last equality is given by Exercise 3.1.

3.5. Multiplication by a nonzero complex number induces a homeomorphism of \(S^2 \) unto itself, hence it does no harm to assume that \(f \) is monic. Then the family of maps \(f_t(z) = z^k + (1-t)(f - z^k) \) extends to a homotopy \(\bar{f}_t \) from \(\bar{f} \) to \(z^k : S^2 \to S^2 \). (explain in details why we cannot deform \(f \) to a polynomial of different degree and then extend) Therefore \(\deg \bar{f} = k \) by Exercise 3.4.

3.6. Since \(\deg \bar{f} = k \neq 0 \), by Exercise 2.5 \(\bar{f} \) is onto. Noting that \(\bar{f}(\infty) = \infty \), \(f \) must map some \(z \in \mathbb{C} \) to 0.
3.7. Consider the local homology groups $H_2(X, X - \{x\})$, which we denote by H_x for short. Applying Exercise 2.6 one can show the following:

1. If x is not on any coordinate axis, then $H_x \cong H_1(S^1) \cong \mathbb{Z}$.
2. If x lies on a coordinate axis but is not the origin, then $H_x \cong H_1(Y)$, where Y is a connected graph with 2 vertices and 4 edges joining them. Then Y has Euler characteristic $\chi(Y) = -2$, which implies that rank $H_1(Y) = \text{rank } H_0(Y) - (-2) = 3$, i.e. $H_1(Y) = \mathbb{Z}^3$.
3. If x is the origin, then $H_x \cong H_1(Y)$, where Y is a connected graph with 6 vertices and 12 edges (attached to an octahedron). Then Y has Euler characteristic $\chi(Y) = -6$, hence rank $H_1(Y) = \text{rank } H_0(Y) - (-6) = 7$, i.e. $H_1(Y) = \mathbb{Z}^7$.

In summary, the local homology group at the origin is different from that at any other point. Hence it must be a fixed point of any homeomorphism of X onto itself.

4.1. $H_0(X) = \mathbb{Z}$, $H_1(X) = \mathbb{Z}/3\mathbb{Z}$, $H_q(X) = 0$ for $q \geq 2$.

4.2. Consider an n-sided polydisc, whose edges are all given the counter-clockwise orientation. Let X be obtained by identifying the n edges. Then $H_1(X) = \mathbb{Z}/n\mathbb{Z}$.

5.1. Since $\tilde{H}_n(U \cap V) = 0$ for all n, the Mayer-Vietoris sequence yields $\tilde{H}_n(X) \cong \tilde{H}_n(U) \oplus \tilde{H}_n(V)$.

5.2. Take $U = A \cup N$, $V = B \cup N$. Then U, V satisfy the assumptions of Exercise 5.1. It is clear that A, B are deformation retracts of U, V respectively. Hence $\tilde{H}_n(X) \cong \tilde{H}_n(U) \oplus \tilde{H}_n(V) \cong \tilde{H}_n(A) \oplus \tilde{H}_n(B)$.

5.3. (a) The assumption $X = A^o \cup B^o$ implies that $\bar{X} - \bar{A} \subset B^o$. Therefore $H_n(A, A \cap B) \cong H_n(X, B)$ by excision. Similarly $H_n(B, A \cap B) \cong H_n(X, A)$.

(b) We have the commutative diagram with exact rows

$$
\begin{array}{cccccc}
0 \to & C_n(A \cap B) \to & C_n(A) \oplus C_n(B) \to & C_n(X, \mathcal{U}) \to & 0 \\
\downarrow & & \downarrow & & \downarrow \\
0 \to & C_n(A \cap B) \to & C_n(A) \to & C_n(A, A \cap B) \to & 0
\end{array}
$$

where $\mathcal{U} = \{A, B\}$, ψ is the natural projection, and φ is the natural map $C_n(X, \mathcal{U}) \to C_n(X) \to C_n(X, B) \cong C_n(A, A \cap B)$. The vertical maps also commute with various boundary operators $\partial_n : C_n \to C_{n-1}$. In particular φ maps $Z_n(X, \mathcal{U})$ into $Z_n(A, A \cap B)$. Take $\alpha \in Z_n(X, \mathcal{U})$ and a lift $\alpha' \in C_n(A) \oplus C_n(B)$. Then $\psi(\alpha')$ is a lift of $\varphi(\alpha) \in Z_n(A, A \cap B)$. We know that $\partial_n \alpha' = \Phi(\beta) = (i_# \beta, j_# \beta)$ for some $\beta \in Z_{n-1}(A \cap B)$, which implies that $\partial_n \psi(\alpha') = \psi(\partial_n \alpha') = i_# \beta$. It follows that the boundary operator

$\Delta : H_n(X, \mathcal{U}) \to H_{n-1}(A \cap B)$

maps $[\alpha]$ to $[\beta]$, and the boundary operator

$\partial_s : H_n(A, A \cap B) \to H_{n-1}(A \cap B)$
maps \(\varphi_*[\alpha] = [\varphi(\alpha)] \) to \([\beta]\). In other words, \(\Delta \) coincides with \(\partial_* \varphi_* \), where \(\varphi_* : H_n(X, \mathcal{U}) \to H_n(A, A \cap B) \) is the composition

\[
H_n(X, \mathcal{U}) \cong H_n(X) \to H_n(X, B) \cong H_n(A, A \cap B).
\]

This is the required assertion.

5.4. We have the commutative diagram with exact rows

\[
\begin{array}{cccccc}
H_n(A \cap B) & i_* & H_n(A) & j_* & H_n(A, A \cap B) & \partial_* & H_{n-1}(A \cap B) & i_* & H_{n-1}(A) \\
\downarrow k_* & & \downarrow i_* & & \downarrow h_* & & \downarrow k_* & & \downarrow i_* \\
H_n(B) & i' & H_n(X) & j' & H_n(X, B) & \partial' & H_{n-1}(B) & i' & H_{n-1}(X)
\end{array}
\]

The homomorphism \(\Delta : H_n(X) \to H_{n-1}(A \cap B) \) is defined by \(\partial_* \circ h_*^{-1} \circ j_* \). We only need to check the exactness at \(H_n(X) \) and \(H_{n-1}(A \cap B) \) of the Mayer-Vietoris sequence

\[
H_n(A) \oplus H_n(B) \xrightarrow{\psi} H_n(X) \xrightarrow{\Delta} H_{n-1}(A \cap B) \xrightarrow{\varphi} H_{n-1}(A) \oplus H_{n-1}(B)
\]

where \(\psi = (l_* - i_*), \varphi = (i_*, k_*) \).

It is easy to see that \(\Delta \psi = 0, \varphi \Delta = 0 \). It remains to show that

(1) \(\ker \Delta \subset \operatorname{im} \psi \): Take \(\gamma \in H_n(X) \) such that \(\Delta \gamma = 0 \). Then there exists \(\alpha \in H_n(A) \) such that \(h_*^{-1} j_* \gamma = j_* \alpha \). It follows that \(\gamma - l_* \alpha \in \operatorname{im} j'_* \), i.e. \(\gamma \in \operatorname{im} \psi \).

(2) \(\ker \varphi \subset \operatorname{im} \Delta \): Take \(\alpha \in H_{n-1}(A \cap B) \) such that \(\varphi(\alpha) = 0 \), i.e. \(i_* \alpha = 0, k_* \alpha = 0 \). Then \(\alpha = \partial_* \beta \) for some \(\beta \in H_n(A, A \cap B) \). We have \(\partial'_* h_* \beta = k_* \partial_* \beta = 0 \), hence \(h_* \beta = j'_* \gamma \) for some \(\gamma \in H_n(X) \), i.e. \(\alpha = \Delta \gamma \).

6.1. Consider \(\mathbb{R}^n \) as the complement of a point in \(S^n \), so that the Mayer-Vietoris sequence for \(S^n = \mathbb{R}^n \cup (S^n - Y) \) reads

\[
\cdots \to \tilde{H}_i(\mathbb{R}^n - Y) \to \tilde{H}_i(\mathbb{R}^n) \oplus \tilde{H}_i(S^n - Y) \to \tilde{H}_i(S^n) \to \tilde{H}_{i-1}(\mathbb{R}^n - Y) \to \cdots
\]

Since \(\tilde{H}_i(\mathbb{R}^n) = \tilde{H}_i(S^n - Y) = 0 \) for all \(i \), we have \(\tilde{H}_i(\mathbb{R}^n - Y) \cong \tilde{H}_{i+1}(S^n) = \mathbb{Z} \) if \(i = n - 1 \) and 0 otherwise.

6.2. Again think of \(\mathbb{R}^n \) as a complement of a point in \(S^n \), and we have the Mayer-Vietoris sequence

\[
\cdots \to \tilde{H}_i(\mathbb{R}^n - A) \to \tilde{H}_i(\mathbb{R}^n) \oplus \tilde{H}_i(S^n - A) \to \tilde{H}_i(S^n) \to \tilde{H}_{i-1}(\mathbb{R}^n - A) \to \cdots
\]

Since \(\tilde{H}_i(\mathbb{R}^n) = 0 \) for all \(i \), \(\tilde{H}_i(S^n - A) \cong \mathbb{Z} \) for \(i = n - k - 1 \) and 0 otherwise, we have

(1) If \(k = 0 \), then \(\tilde{H}_i(\mathbb{R}^n - A) \cong \mathbb{Z}^2 \) for \(i = n - 1 \) and 0 otherwise.

(2) If \(k > 0 \), then \(\tilde{H}_i(\mathbb{R}^n - A) \cong \mathbb{Z} \) for \(i = n - 1 \) or \(n - k - 1 \), and 0 otherwise.

It follows that \(\mathbb{R}^n - A \) has three components if \(n = 1, k = 0 \); two components if \(n > 1 \) and \(k = n - 1 \); one component otherwise.
6.3. Let A be a subset of \mathbb{R}^n which is homeomorphic to S^{n-1}. If $n = 1$, then $\mathbb{R} - A$ has three components and the assertion cannot hold. If $n > 1$, then by the previous two exercises, $\mathbb{R}^n - A$ has two components, and the analog of Lemma 6.2 holds, i.e. $\mathbb{R}^n - Y$ is connected for a subset Y of \mathbb{R}^n which is homeomorphic to I^{n-1}. Then the proof of Proposition 6.5 can be carried out word-by-word to this case, which shows that A is the boundary of each component of $\mathbb{R}^n - A$.

6.4. Since A is closed and bounded closed sets are compact, a homeomorphism $h : A \to \mathbb{R}^{n-1}$ maps bounded subsets to bounded subsets. It follows that we may add a point to compactify both \mathbb{R}^n and A simultaneously. Therefore $\mathbb{R}^n - A$ is homeomorphic to $S^n - A'$, where A' is a subset of S^n homeomorphic to S^{n-1}. Then the assertion follows from the Jordan-Brouwer theorem.

Note that the assertion is not true if A is not closed. For example consider $n = 2$, $A = \{(x,0) : x > 0\}$, then $\mathbb{R}^2 - A$ is connected.

6.5. Let U and V be homeomorphic subsets of \mathbb{R}^n. Think of \mathbb{R}^n as the complement of a point of S^n, so that it is open in S^n. If U is open in \mathbb{R}^n, then it is open in S^n as well, hence V is open by Theorem 6.6. It follows directly that if A, B are subsets of \mathbb{R}^n and $h : A \to B$ is a homeomorphism, then h maps interior points onto interior points, and boundary points onto boundary points.

Let U, V be subsets of the n-dimensional manifolds M, N respectively, such that $h : U \to V$ is a homeomorphism. Assume that U is open, h maps $x \in U$ to $y \in V$. Take open neighborhoods U', V' of x, y respectively, which are both homeomorphic to \mathbb{R}^n. Then h maps $U \cap U' \cap f^{-1}(V')$ onto $V \cap f(U') \cap V'$. Because $U \cap U' \cap f^{-1}(V')$ is open, we have $V \cap f(U') \cap V'$ is open as well. It follows that V is open.

6.6. Take the standard embedding $\mathbb{R}^n \subset \mathbb{R}^m$ by $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0, \ldots, 0)$, where $m > n$. If \mathbb{R}^m is homeomorphic to \mathbb{R}^n, then Brouwer’s theorem on invariance of domain for subsets of \mathbb{R}^n (Exercise 6.5) implies that \mathbb{R}^n is open in \mathbb{R}^m, which is absurd.

6.7. Take the standard embedding $S^n \subset \mathbb{R}^{n+1} \subset \mathbb{R}^m$. Then S^n has no interior points, but I^m has. Hence by Exercise 6.5 no subset of S^n is homeomorphic to I^m.

6.8. We need to show that f is open, i.e. f maps open sets to open sets. Take an open subset V of U, $x \in V$, and a closed ball $B(x, r) \subset V$, where $r > 0$. By the closed mapping theorem (which says a continuous map f from a compact space X to a Hausdorff space Y is closed), f gives a homeomorphism from $B(x, r)$ to $f(B(x, r))$. By Exercise 6.5, $f(B(x, r))$ is open. Therefore $f(V)$ is open.

6.9. A proper subset of S^n can be considered as a subset of \mathbb{R}^n. But no subset of \mathbb{R}^n can be homeomorphic to S^n, by Chapter V, Corollary 9.4.
6.10. This is Chapter V, Corollary 9.3.

6.11. Take an m-dimensional closed ball inside U. A continuous, one-to-one map $U \to \mathbb{R}^n$ yields a continuous one-to-one map $S^{m-1} \to \mathbb{R}^n \subset \mathbb{R}^{m-1}$, which is impossible.

More generally, if M, N are manifolds of dimension $m > n$ respectively, and U is an open subset of M, then there is no continuous, one-to-one map $U \to N$. We omit the proof.

6.12. (a) In this case we have the Mayer-Vietoris sequence

$$\cdots \to \tilde{H}_i(S^n-(A\cup B)) \to \tilde{H}_i(S^n-A)\oplus \tilde{H}_i(S^n-B) \to \tilde{H}_i(S^n) \to \tilde{H}_{i-1}(S^n-(A\cup B)) \to \cdots$$

Using Theorem 6.3 we deduce that

1. If $p < q$, then $\tilde{H}_i(S^n - (A \cup B)) \cong \mathbb{Z}$ for $i = n - 1, n - p - 1$ or $n - q - 1$, and 0 otherwise.
2. If $p = q$, then $\tilde{H}_i(S^n - (A \cup B)) \cong \mathbb{Z}$ for $i = n - 1$, $\cong \mathbb{Z}^2$ for $i = n - p - 1$, and 0 otherwise.

(b) In this case, identifying $S^n - (A \cap B)$ with \mathbb{R}^n, the Mayer-Vietoris sequence reads

$$\cdots \to \tilde{H}_i(S^n-(A\cup B)) \to \tilde{H}_i(S^n-A)\oplus \tilde{H}_i(S^n-B) \to \tilde{H}_i(S^n) \to \tilde{H}_{i-1}(S^n-(A\cup B)) \to \cdots$$

It follows that $\tilde{H}_i(S^n - (A \cup B)) \cong \tilde{H}_i(S^n - A) \oplus \tilde{H}_i(S^n - B)$, which gives us

1. If $p < q$, then $\tilde{H}_i(S^n - (A \cup B)) \cong \mathbb{Z}$ for $i = n - p - 1$ or $n - q - 1$, and 0 otherwise.
2. If $p = q$, then $\tilde{H}_i(S^n - (A \cup B)) \cong \mathbb{Z}^2$ for $i = n - p - 1$, and 0 otherwise.

It follows that if $p = q = n - 1$, then $S^n - (A \cup B)$ has three components in both case (a) and (b).

6.13. It may not be true. For example the exponential map gives a homeomorphism from $A = (-\infty, 0]$ to $B = (0, 1]$. Then A is closed in \mathbb{R}, but B is not.

6.14. Following the hint, use induction on the number edges of X. If $X = \bar{e}$ has one edge, then $\tilde{H}_i(S^3 - \bar{e}) \cong 0$ for all i by Lemma 6.2, and $H_1(\bar{e}) = 0$ as well.

Take an edge e such that the closure of $X - \bar{e}$ is a connected graph Y having one less edge, so that the assertion holds for Y by induction hypothesis. We have two cases.

1. Y have one vertex in common with e. Then the Euler characteristic $\chi(X) = \chi(Y)$, hence rank $H_1(X) = \text{rank } H_1(Y)$. The Mayer-Vietoris sequence

$$\cdots \to H_{i+1}(\mathbb{R}^2) \to H_i(S^3 - X) \to H_i(S^3 - \bar{e}) \oplus H_i(S^3 - Y) \to H_i(\mathbb{R}^2) \to \cdots$$

gives us $H_i(S^3 - X) \cong H_i(S^3 - Y)$ for all $i \geq 1$. Hence the induction follows.

2. Y has two vertices in common with e. Then $\chi(X) = \chi(Y) - 1$ hence rank $H_1(X) = \text{rank } H_1(Y) + 1$. The Mayer-Vietoris sequence

$$\cdots \to H_{i+1}(S^3 - S^0) \to H_i(S^3 - X) \to H_i(S^3 - \bar{e}) \oplus H_i(S^3 - Y) \to H_i(S^3 - S^0) \to \cdots$$
together with Theorem 6.3 show that
\[\text{rank } H_1(S^3 - X) = \text{rank } H_2(S^3 - S^0) + \text{rank } H_1(S^3 - Y) = 1 + \text{rank } H_1(Y) = \text{rank } H_1(X), \]
and \[H_i(S^3 - X) = 0 \text{ for } i > 1. \] Again the induction follows.

7.1. By Chapter II Exercise 7.5, \(\pi(X, e) \) is abelian hence is equal to its own abelianization, which is isomorphic to \(H_1(X) \).