

Contents

Introduction	<i>page xi</i>
1 Examples and Basic Concepts	1
1.1 The Notion of a Dynamical System	1
1.2 Circle Rotations	3
1.3 Expanding Endomorphisms of the Circle	5
1.4 Shifts and Subshifts	7
1.5 Quadratic Maps	9
1.6 The Gauss Transformation	11
1.7 Hyperbolic Toral Automorphisms	13
1.8 The Horseshoe	15
1.9 The Solenoid	17
1.10 Flows and Differential Equations	19
1.11 Suspension and Cross-Section	21
1.12 Chaos and Lyapunov Exponents	23
1.13 Attractors	25
2 Topological Dynamics	28
2.1 Limit Sets and Recurrence	28
2.2 Topological Transitivity	31
2.3 Topological Mixing	33
2.4 Expansiveness	35
2.5 Topological Entropy	36
2.6 Topological Entropy for Some Examples	41
2.7 Equicontinuity, Distality, and Proximality	45
2.8 Applications of Topological Recurrence to Ramsey Theory	48

3 Symbolic Dynamics	54
3.1 Subshifts and Codes	55
3.2 Subshifts of Finite Type	56
3.3 The Perron–Frobenius Theorem	57
3.4 Topological Entropy and the Zeta Function of an SFT	60
3.5 Strong Shift Equivalence and Shift Equivalence	62
3.6 Substitutions	64
3.7 Sofic Shifts	66
3.8 Data Storage	67
4 Ergodic Theory	69
4.1 Measure-Theory Preliminaries	69
4.2 Recurrence	71
4.3 Ergodicity and Mixing	73
4.4 Examples	77
4.5 Ergodic Theorems	80
4.6 Invariant Measures for Continuous Maps	85
4.7 Unique Ergodicity and Weyl’s Theorem	87
4.8 The Gauss Transformation Revisited	90
4.9 Discrete Spectrum	94
4.10 Weak Mixing	97
4.11 Applications of Measure-Theoretic Recurrence to Number Theory	101
4.12 Internet Search	103
5 Hyperbolic Dynamics	106
5.1 Expanding Endomorphisms Revisited	107
5.2 Hyperbolic Sets	108
5.3 ϵ -Orbits	110
5.4 Invariant Cones	114
5.5 Stability of Hyperbolic Sets	117
5.6 Stable and Unstable Manifolds	118
5.7 Inclination Lemma	122
5.8 Horseshoes and Transverse Homoclinic Points	124
5.9 Local Product Structure and Locally Maximal Hyperbolic Sets	128
5.10 Anosov Diffeomorphisms	130
5.11 Axiom A and Structural Stability	133
5.12 Markov Partitions	134
5.13 Appendix: Differentiable Manifolds	137

6 Ergodicity of Anosov Diffeomorphisms	141
6.1 Hölder Continuity of the Stable and Unstable Distributions	141
6.2 Absolute Continuity of the Stable and Unstable Foliations	144
6.3 Proof of Ergodicity	151
7 Low-Dimensional Dynamics	153
7.1 Circle Homeomorphisms	153
7.2 Circle Diffeomorphisms	160
7.3 The Sharkovsky Theorem	162
7.4 Combinatorial Theory of Piecewise-Monotone Mappings	170
7.5 The Schwarzian Derivative	178
7.6 Real Quadratic Maps	181
7.7 Bifurcations of Periodic Points	183
7.8 The Feigenbaum Phenomenon	189
8 Complex Dynamics	191
8.1 Complex Analysis on the Riemann Sphere	191
8.2 Examples	194
8.3 Normal Families	197
8.4 Periodic Points	198
8.5 The Julia Set	200
8.6 The Mandelbrot Set	205
9 Measure-Theoretic Entropy	208
9.1 Entropy of a Partition	208
9.2 Conditional Entropy	211
9.3 Entropy of a Measure-Preserving Transformation	213
9.4 Examples of Entropy Calculation	218
9.5 Variational Principle	221
<i>Bibliography</i>	225
<i>Index</i>	231