Interactive Modeling of Tree Bark

Xi Wang, Lifeng Wang, Ligang Liu
Shimin Hu, Baining Guo

Tsinghua University
Microsoft Research Asia
Tree Bark in Real World

- Rich surface geometry
 - Ironbark
 - Fracture
 - Tessellation
 - Furrowed cork
 - Lenticel
 - Stringy bark

- Complex appearance
 - Determined by the underlying mesostructure and texture colors
Motivations

- Multi-levels geometry representation of bark
 - Gross shape
 - Mesostructure
 - Microstructure
- Plenty of bark textures
 - Automatic recovering from images, but…
 - Interactive
 - Easy to specify features
 - Easy to editing
Related Works

- Bark modeling
 - Procedure texture [Opperheimer86, Hart96]
 - Physical based simulation [Federl96, Tanoue98, Lefebver02]

- Mesostructure reconstruction
 - From multi-images [Liu01, Rushmeier97]
 - From a single image [Dischler02, Leclerc91]
Our approach

- Based on a single image captured by a handheld camera

- Interactive modeling of a variant of bark with an easy-to-use UI
 - Height fields
 - Texture
Framework

Specification Component
- Image
 - Texton analysis
 - Feature 1
 - Feature 2
 - Feature n

Editing Component
- Edit tool
 - Mesostructure
 - Color
Feature Specification

- **Texton analysis**
 - Based on low-level vision procession.
 - Segment bark image to a set of texton channels by the method similar to [Malik99]

- **Filtering and clustering**
 - 36 Gaussian derivative filters
 - Clustered using K-mean ($K=25$)
Texton Analysis

Bark Image

Filter

Feature Vectors

Cluster

Texton Image (K=25)
Feature Specification (Cont.)

- Merging texton channels
 - Based on high-level human knowledge.
 - Combine texton channels to several bark features by user interactions
Merging Texton Channels
Merging Texton Channels
Merging Texton Channels

Horizontal fractures
Merging Texton Channels

Other regions
Height Field Construction

- **Height assignment**
 - Assign height value for a single pixel for each feature channel

- **Height field propagation**
 - Height is propagated to other pixels in the feature channel
 - Self-similarity [Brooks02]
 - Grey-scale value
 - Mean value
Editing UI (video)
Texture Correction

- Bark image combines texture and illumination
 - Calculate the per-pixel illumination coefficients by local normal direction (N) and approximated light direction (L)
 - Correct the Illumination: $T_0 = \frac{I_o}{N \cdot L}$

Bark Image Height Field Texture 3D view
Experiment Result (1)

- **Input images**
 - Captured by a CANNON digital camera

- **Failed case**
 - Stringly bark
 - Others whose microstructure can not be represented by height fields
Experiment Results (2)
Experiment Results (3)
Result Video: (rendered by VDM)
Conclusion

● Advantages
 ● Convenient to capture
 ● Easy to specify and model bark with our UI
 ● Appropriate for a variant of bark

● Limitations
 ● Difficult to model non-height-field-represented bark
 ● Difficult to precisely construct the surface geometry
Future work

- A better initial height fields estimated from computer vision techniques
- More general bark surfaces
 - Height fields
 - Non height fields
- Modeling of general mesostructures
Thank You!