Surface Parameterization via Aligning Optimal Local Flattening

Zhong-Gui Chen
zheng1013@126.com
Li-Gang Liu
ligangliu@zju.edu.cn
Zheng-Yue Zhang
zyzhang@zju.edu.cn
Guo-Jin Wang
gjwang@hzcnc.com
Department of Mathematics, Zhejiang University, China

【OVERVIEW】

◆ Algorithm
 ■ Optimal local flattening
 ■ Global alignment

◆ Contribution
 ✓ Geometry structure preserving
 ✓ Free boundary
 ✓ Dealing with holes
 ✓ Linear constraints
 ✓ Fast and efficient

【ALGORITHM】

◆ Optimal Local Flattening
 ■ Local geodesic polar map [Welch and Witkin 1994]
 \[
 \| x_i - x_i^0 \| = q_i - q_i^0, \quad \beta_j = 2\pi x_j / \sum \alpha_i, \quad j = 1, \ldots, k.
 \]

◆ Global Alignment
 ■ Local distortion measure (LDM)
 \[
 e_i^0 = t_i - (t_i + \mu_i), \quad i = 1, \ldots, N.
 \]

 ■ Global distortion measure (GDM)
 \[
 \text{GDM} = \sum \alpha_i \| E_i \|_F^2 = \sum \alpha_i \| T_i(1-eI) - U_iQ_i \|_F^2.
 \]

◆ Solution
 ■ Minimization with normalization constraint
 \[
 \min \{ \text{GDM} \} = \min \| TSW \|_F^2, \quad TT^T = I.
 \]

 The optimal \(T \) is given by the two eigenvectors of the matrix \(B \) corresponding to the 2nd and 3rd smallest eigenvalues, where
 \[
 B = SWW^T S^T.
 \]

△ Texture Mapping with Feature Constraints
 ■ Minimization with linear constraints
 \[
 \min \{ \text{GDM} \} = \min \| TSW \|_F^2, \quad TT^T = I.
 \]

 \[
 L_{ij} = \left\{ \begin{array}{ll}
 \mu, & j = i, 1 \leq k \leq s, 1 \leq j \leq N, \\
 0, & \text{else},
 \end{array} \right.
 \]

 \[
 C = \mu [c_1, \ldots, c_N].
 \]

 \[
 T \in \mathbb{R}^{N \times N} \text{ s.t. } [SW, L] = [0, C].
 \]

【EXPERIMENTAL RESULTS】

△ Example of parameterizing irregularly sampled model

△ Comparison with Floater’s method [Floater 1997]

△ Comparison with MDS method [Zigelman et al. 2002]