收藏本站 | 设为首页 | English
当前位置:首页 -> 瀛︽湳绉戠爺
(8月25日)Well-posedness and scattering for the Boltzmann equations: Soft potential with cut-off
来源: 陈黎   发布时间:2017-8-23   阅读次数:402

标题:Well-posedness and scattering for the Boltzmann equations: Soft potential with cut-off

报告人:江金城 清华大学(新竹)
报告时间:2017年8月25日上午10:00-11:00
报告地点:工商楼2楼报告厅

摘要:We prove the global existence of the unique mild solution for the Cauchy problem of the cut-off Boltzmann equation for soft potential model γ=2−N with initial data small in $L^N_{x,v}$ where N=2,3 is the dimension. The proof relies on the existing inhomogeneous Strichartz estimates for the kinetic equation by Ovcharov and convolution-like estimates for the gain term of the Boltzmann collision operator by Alonso, Carneiro and Gamba. The global dynamics of the solution is also characterized by showing that the small global solution scatters with respect to the kinetic transport operator in  $L^N_{x,v}$. Also the connection between function spaces and cut-off soft potential model −N<γ<2−N is characterized in the local well-posedness result for the Cauchy problem with large initial data.


欢迎大家参加!
联系人:王成波老师(wangcbo@zju.edu.cn)

Copyright © 2003-2017,浙江大学数学系 保留所有权利
联系我们:mathadmin@zju.edu.cn 邮编:310027 电话:0571-87953867