收藏本站 | 设为首页 | English
当前位置:首页 -> 瀛︽湳绉戠爺
(1月3日)Positivity-preserving and symmetry-preserving conservative Lagrangian schemes for compressible Euler equations in 2D cylindrical coordinates
来源: 陈黎   发布时间:2017-12-28   阅读次数:490

报告人:成娟(北京应用物理与计算数学研究所)

时间:201813日上午945-1045

地点:逸夫工商楼200-9 报告厅

摘要:

There are two typical frameworks to describe the motion of fluid flow, that is, the Eulerian framework and the Lagrangian framework. In the Eulerian formulation the mesh is fixed in space, which makes these methods very suitable for flows with large deformations. On the other hand, Lagrangian methods, e.g., in which the computational mesh moves with the fluid, are more suitable for problems involving interfaces between materials or free surfaces. Thus they are widely used in many fields for multi-material flows simulations.

In applications such as astrophysics and inertial confinement fusion, there are many three-dimensional cylindrical-symmetric multi-material problems which are usually simulated by Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of simulation, the critical issues for the schemes include keeping positivity of physically positive variables such as density and internal energy and keeping spherical symmetry in the cylindrical coordinate system if the original physical problem has this symmetry. In this talk, we will introduce our recent work on high order positivity-preserving and symmetry-preserving Lagrangian schemes solving compressible Euler equations. The properties of positivity-preserving and symmetry-preserving are proven rigorously. One- and two-dimensional numerical results are provided to verify the designed characteristics of these schemes.

报告人介绍:

成娟,北京应用物理与计算数学研究所研究员,博士生导师。1989年本科毕业于南京大学数学系,2001年获南京航空航天大学计算流体力学博士学位。1992年至2003年工作于南京航空航天大学航空宇航学院,2004年至今工作于北京应用物理与计算数学研究所。主要从事计算流体力学与偏微分方程数值解研究。20129月至201212月和20143月至20144月赴美国布朗大学进行合作研究,20153月至20154月赴美国加州大学河滨分校学术访问。现为国际著名SCI期刊“Journal of Computational Physics”、国内核心期刊计算数学编委,北京计算数学学会副理事长。近年来在流体力学高精度拉格朗日与任意拉格朗日欧拉(ALE)方法、高精度保正守恒拉格朗日格式、保球对称与守恒拉格朗日格式以及辐射输运高阶保正格式等方面,取得了一系列的创新性成果。先后主持多项自然科学基金面上项目、国家高技术863-804等课题,作为骨干参加多项国家科技部973项目以及自然科学基金重点项目。曾获航空航天工业部科技进步奖二等奖一项、中国工程物理院科技创新奖二等奖一项。应邀在国际、国内学术会议上作大会邀请报告多次。

欢迎大家参加!

联系人:仲杏慧(zhongxh@zju.edu.cn

Copyright © 2003-2018,浙江大学数学系 保留所有权利
联系我们:mathadmin@zju.edu.cn 邮编:310027 电话:0571-87953867