收藏本站 | 设为首页 | English
当前位置:首页 -> 瀛︽湳绉戠爺
(1月15日)Landau-Ginzburg/Calabi-Yau correspondence in one dimension
来源: 谢彦欣   发布时间:2018-1-12   阅读次数:202

Title: Landau-Ginzburg/Calabi-Yau correspondence in one dimension
 
Speaker: Yefeng Shen (Oregon University)

Abstract: One way to understand Landau-Ginzburg/Calabi-Yau correspondence is to study Gromov-Witten theory of a Calabi-Yau variety (or orbifold) and Fan-Jarvis-Ruan-Witten theory of a counterpart LG model for a quasihomogeneous polynomial. When the target Calabi-Yau is one dimensional, their GW/FJRW invariants are controlled by tautological relations from moduli space of stable curves. They are coefficients of expansions of appropriate quasi-modular forms at different points. As a consequence, we can realize the correspondence by Cayley transformations.
 
Time: 2018/1/15 4:00-5:00PM

Room: 工商楼200-9
           
联系人:叶和溪 yehexi@zju.edu.cn
 
 
欢迎大家参加!
Copyright © 2003-2018,浙江大学数学系 保留所有权利
联系我们:mathadmin@zju.edu.cn 邮编:310027 电话:0571-87953867