收藏本站 | 设为首页 | English
当前位置:首页 -> 瀛︽湳绉戠爺
(4月2日)概率统计学术报告
来源: 谢彦欣   发布时间:2018-3-30   阅读次数:503

报告人: 张登博士, 上海交通大学 

报告题目:Tridiagonal random matrices

时间:201842日下午3:00-4:00

地点:浙江大学玉泉校区逸夫工商管理楼200-9

摘要:In this talk we consider quite general tridiagonal random matrices, including the random birth-death Q matrix, the Anderson model as well as beta-Hermite ensembles. We first show the existence and convolution formulation for limiting spectral distributions of random birth-death Q matrices. Moreover, the Gaussian fluctuations as well as deviations of traces are obtained for general tridiagonal random matrices. The proof relies on a new path expansion of traces based on the types of circuits determined by the tridiagonal structure.


欢迎大家参加!

 

联系人: 苏中根 suzhonggen@zju.edu.cn,  87953676

 

浙江大学数学科学学院

统计研究所

2018-03-30

 


Copyright © 2003-2018,浙江大学数学系 保留所有权利
联系我们:mathadmin@zju.edu.cn 邮编:310027 电话:0571-87953867