其他

当前位置 : 首页 > 其他 > 学术活动

数学若干前沿领域论坛

编辑:xyx 时间:2018年07月22日 访问次数:425

浙江大学数学科学学院九十周年院庆系列活动之六十

 

数学若干前沿领域论坛

(数学科学学院)

地点:玉泉校区工商楼200-9

时间:7.25-7.26, 2018

 

1. 秦厚荣(南京大学)

题目:同余数的判别法及其应用

时间:7.25上午8:30-9:30

摘要:同余数问题历史悠久,研究结果丰富. 我们将给出同余数的一个判别法则. 利用这个判别法则,我们可以简化很多已有结果的证明,同时也会给出非同余数方面的系列新结果.

  

2. 覃帆(上海交通大学)

题目:Bases of cluster algebras 

时间:7.25上午10:00-11:00

摘要: In this talk, we give a review of cluster algebras and their bases. We present and compare different bases of cluster algebras arising from representation theory, categorification, and geometry. In the end, we discuss some recent progress in this topic.

   

3. 刘东文(浙江大学)

题目:On the p-adic local descent for unitary group

时间:7.25上午11:15-12:15

摘要:Starting from the local Gan-Gross-Prasad conjecture, we explain the spectral decomposition of local descents at first occurrence p-adic unitary groups using both Bessel and Fourier-Jacobi models, in terms of local Langlands parameters and local root numbers. This talk is based on part of a project in progress joint with Dihua Jiang and Lei Zhang. 

 

4. 刘建亚(山东大学)

   题目:TBA

时间:7.25下午3:00-4:00

 

5.于飞(浙江大学)

题目:Dynamical zeta functions and the first Chern class

时间:7.25下午4:30-5:30

摘要:We try to establish the relations between the residue of logarithmic derivative of certain dynamical zeta functions and the first Chern class for a flat bundle on curves by using weighted prime orbits theorems and Lyapunov exponents. We show some results for some Teichm"uller geodesic flows, also for one dimension fundamental group representations.

 

6. .屈长征(宁波大学)

题目: 不变几何流和可积系统

  时间:7.26上午9:00-10:00

 

7. 谭绍滨(厦门大学)

题目:Harish-Chandra modules over the divergence zero vector fields

时间:7.26上午10:30-11:30

摘要:The Lie algebra of divergence zero vector fields on a torus is an infinite dimensional Lie algebra of skew derivations over the ring of Laurent polynomials. We consider the semidirect product of the Lie algebra of divergence zero vector fields on a torus with the algebra of Laurent polynomials. We prove that a Harish-Chandra module of the universal central extension of the derived Lie subalgebra of this semidirect product is either a uniformly bounded module or a generalized highest weight module. Furthermore, we classify all the generalized highest weight Harish-Chandra modules. This is a joint work with Dr. Zhiqiang Li and Prof. Qing Wang.