旧版    ENGLISH

其他

当前位置 : 首页 > 其他 > 学术活动

概率统计学术报告

编辑:wfy 时间:2018年10月31日 访问次数:392

题目: Nonparametric Sieve Maximum Likelihood Estimation for Semi-competing Risks Data

时间:116日(周二)下午3:005:00

地点:工商楼2楼报告厅(200-9

报告人:Professor Xu, J. F.(The University of Hong Kong)

摘要:In clinical trials comparing therapeutic interventions, a subject may experience distinct types of events. We consider the problem of estimating the transition functions for a semi-competing risks model under illness-death model framework. We propose to estimate the intensity functions by maximizing a B-spline based sieve likelihood. The method yields smooth estimates without parametric assumptions. This approach also permits direct computation of the variance of parameters using the inverse of the Hessian matrix. Under some mild conditions, the estimators are shown to be strongly consistent; the convergence rate of the estimator for transition function is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real data set is used to illustrate our approach.


欢迎大家参加!

联系人:张荣茂(rmzhang@zju.edu.cn)