Exercise 2.5, No. 7

(3) 此题答案有误
解：柱面的方程是 $|\overrightarrow{MM_0} \times \overrightarrow{u}| = |\overrightarrow{M_1M_0} \times \overrightarrow{u}|$
即 $|(1, -1, 2) \times (0, -3, 2)| = |(x - 1, y - 2, z + 2) \times (1, -1, 2)|$ 化简得：
$5x^2 + 5y^2 + 2z^2 + 2xy + 4yz - 4zx - 22x - 14y + 4z = 0$

Exercise 2.5, No. 13

此题答案有误
解：设 $l_1$ 上的点为 $(\lambda - a, -\lambda, \lambda)$ 把它代入 $l_2$ 的方程得到 $\lambda - a = \lambda; -\lambda - 1 = 0$
从中解得 $a = 0; \lambda = 1$. 再由锥面的几何意义得：
$$\frac{|(x+1, y-1, z+1) \cdot (1, -1, 1)|}{\sqrt{3}\sqrt{(x+1)^2 + (y-1)^2 + (z+1)^2}} = \cos \alpha = \frac{|(1, 0, 1) \cdot (1, -1, 1)|}{\sqrt{3}\sqrt{2}}$$
$$x^2 + y^2 + z^2 + 2xy + 2yz - 2xz - 2x + 2y - 2z - 3 = 0$$

Exercise 2.5, No. 16

证明：方程组 \[
\begin{align*}
    a_1x + b_1y + c_1z &= 0 \\
    a_2x + b_2y + c_2z &= 0
\end{align*}
\]
不满秩，故必有非零解 $(\alpha, \beta, \gamma) = \overrightarrow{u}$.

如果 $M_0 = (x_0, y_0, z_0)$ 在方程的轨迹上，即满足方程 $f(s_0, t_0) = 0$ 那么对于任意的 $\lambda, M_0 + \lambda \overrightarrow{u}$ 也满足方程. 由
$$f(a_1x_0 + b_1y_0 + c_1z_0 + \lambda(a_1\alpha + b_1\beta + c_1\gamma), a_2x_0 + b_2y_0 + c_2z_0 + \lambda(a_2\alpha + b_2\beta + c_2\gamma)) = f(s_0, t_0) = 0$$
也就是说通过 $M_0$ 且平行于 $\overrightarrow{u}$ 的直线都满足方程，从而都在方程的轨迹上，因此图像是一个柱面.

Exercise 2.6, No. 6

此题答案有误
解：若过坐标轴的平面截椭球的轨迹为圆，那么这个截面必在以原点为球心的球面上，故可以得
\[
\begin{align*}
    \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} &= 1 \\
    x^2 + y^2 + z^2 &= r^2
\end{align*}
\]
(a) 若过 $x$ 轴，那么 $r = a$, 在上面的方程组中消去 $y$ 得到
$$\left(\frac{1}{b^2} - \frac{1}{a^2}\right)y^2 + \left(\frac{1}{a^2} - \frac{1}{c^2}\right)z^2 = 0,$$
注意到 $a > b > c$ 可见球面与椭球面只有两个交点 $y = 0, x = \pm a$, 不满足
题目的要求.
（b）过 $y$ 轴，那么 $r = b$。在上面的方程中消去 $y$ 得到

$$\left(\frac{1}{a^2} - \frac{1}{b^2}\right)x^2 + \left(\frac{1}{b^2} - \frac{1}{c^2}\right)z^2 = 0$$

化简即得：

$$z = \pm \frac{c}{a} \sqrt{\frac{a^2 - b^2}{b^2 - c^2}} x$$

（c）过 $z$ 轴，那么 $r = c$，类似于 (a) 可知不满足题目的要求。