数学科学学院

Sharp local smoothing estimates for Fourier integral operators

来源:数学科学学院 发布时间:2018-03-14   524

 

报告题目:Sharp local smoothing estimates for Fourier integral operators

报告人: Christopher D. Sogge 教授 (Johns Hopkins University)

时间:3月21日星期三 下午2:00-4:00

地点:欧阳楼314

 

摘要:

We present joint work with D. Beltran and J. Hickman establishing sharp local smoothing estimates for general Fourier integral operators satisfying the cinematic curvature hypothesis.  This solves a problem originally introduced in the early 1990s.  We rely on decoupling estimates of Bourgain and Demeter, which was motivated by early work on local smoothing bounds for wave equations by Wolff.  Our results include sharp local $L^p(dtdx)$ bounds for solutions of wave equations on manifolds for $pge 2(n+1)/(n-1)$, which generalize the results of Bourgain and Demeter for Euclidean space.

 

联系人:王成波老师(wangcbo@zju.edu.cn)

 

 

欢迎大家参加!

 

 

Copyright © 2023 浙江大学数学科学学院    版权所有

    浙ICP备05074421号

技术支持: 寸草心科技     管理登录

    您是第 1000 位访问者