Jacobian猜想与Lie理论--代数基层教学组织2018年上半年学术教学研讨会
Jacobian猜想与Lie理论
-------代数基层教学组织2018年上半年学术教学研讨会
地点:浙江大学紫金港校区 西1-203
25日上午:
主持人: 卢涤明
8:00-8:40:苏育才(同济大学)
2-dimensional Jacobian Conjecture
8:55-9:35:杜现昆(吉林大学)
构造Druzkowski映射
主持人: 冯涛
9:50-10:30: 刘东文(浙江大学)
On the local descent of real unitary groups
26日上午:
主持人: 吴志祥
8:00-8:40:胡峻(浙江大学)
G(r,p,n)型Hecke代数的Z分次胞腔结构
8:45-9:25:林牛(访问教授)
Projective modules over classical Lie algebras of infinite rank in the parabolic category
9:30-10:10:韩刚(浙江大学)
Multivariate divided differences, injectivity of polynomial mappings and the Jacobian Conjecture
主持人: 童雯雯
10:20-11:50:教学讨论(学院主管领导参加)
联系人:李方 教授(13606523884)
报告摘要:
Speaker: Professor Yucai Su
题目:2-dimensional Jacobian Conjecture
摘要:In this talk, the speaker will first present several results established by the speaker using the local bijectivity of Keller maps, then use these results to present his attempt to give a proof of 2-dimensional Jacobian conjecture. The main contents in this talk can be found in the paper recently posted to arxiv:1603.01867.
Speaker: Professor Gang Han (Zhejiang University)
Title: Multivariate divided differences, injectivity of polynomial mappings and the Jacobian Conjecture
Abstract: 我和我的学生孙哲宇近半年多对多项式映射的divided difference及相关性质进行了一些初步的研究,利用该性质可以给出判断多项式映射为单射的几个方法,两个与雅克比猜想相关的结果可以被稍加推广。对于齐次的多项式映射,我们利用polarization给出了它的divided difference的一个公式。我们对一种特殊类型的多项式映射进行了研究,证明了它的divided difference可以写成几个雅克比矩阵的和。
Speaker: Professor Ngau Lam (访问教授)
Title: Projective modules over classical Lie algebras of infinite rank in the parabolic category
Abstract: We study the truncation functors and show the existence of projective cover with a finite Verma flag of each irreducible module in parabolic BGG category $/mc O$ over infinite rank Lie algebra of types types A, B, C and D. Moreover, $/mc O$ is a Koszul category. As a consequence, the corresponding parabolic BGG category $/overline{/mc O}$ over infinite rank Lie superalgebra of types A, B, C and D through the super duality is also a Koszul category. This talk is based on a joint work with Chih-Whi Chen.
Speaker: Dongwen Liu (Zhejiang University)
题目:On the local descent of real unitary groups
摘要:Assuming the local Gan-Gross-Prasad conjecture, we explain the descent of representations of real unitary groups with generic L-parameters. This talk is based on a project joint with Dihua Jiang and Lei Zhang.
Speaker: 胡峻 教授
题目: G(r,p,n)型Hecke代数的Z分次胞腔结构
摘要:我们将介绍最近与Salim合作的工作,即关于如何构造G(r,p,n)型Hecke代数的Z分次胞腔基,由此我们建立起这类Hecke代数的Z分次胞腔表示理论,当r=p=2时,这推广了Geck的关于D型Hecke代数的(非Z分次)胞腔基的之前结果。
Speaker: 杜现昆(吉林大学)
报告题目: 构造Druzkowski映射
设H=(H_1,...,H_n)是三次幂线性映射,即每个H_i是n元线性型L_i的立方. 设A是(L_1,...,L_n)的系数矩阵, 则H=(AX)^{*3}.若H的雅可比矩阵是幂零的, 则称F=X+H是Druzkowski映射.Druzkowski证明了, 为了证明雅可比猜想, 只需考虑Druzkowski映射. 构造非平凡的Druzkowski映射是很困难的. 问题是, 给定n阶矩阵A, H=(AX)^{*3}的雅可比矩阵何时幂零? 为此, 我们考虑仿射簇V={(a_1,...,a_n)|diag(a_1,...,a_n)A幂零}. 当V包含一次或二次超曲面时, 我们确定了A的结构,由此可构造一些Druzkowsk