数学科学学院

Hyperbolic graphs induced by weighted iterated function systems

来源:数学科学学院 发布时间:2020-12-07   315

报告人:孔诗磊(德国比勒菲尔德大学)

报告地点:工商楼200-9

报告时间:12月9日上午10点半—11点半

摘要:For an iterated function system (IFS) $\{S_j\}_{j=1}^N$ of contractive similitudes on $\mathbb{R}^d$, there is a well-known graph structure (augmented tree) X, which is (Gromov-)hyperbolic under the open set condition or some other circumstances. In this talk, we study the hyperbolicity of a new graph $X(s)$ induced by an IFS $\{S_j\}_{j=1}^N$ and a weight $s\in (01)^N$. For the cases that the hyperbolicity holds, we also investigate the relation of the induced Gromov metric and the self-similar measure. In particular, if the IFS $\{S_j\}_{j=1}^N$ is post critically finite (p.c.f.) and admits a regular harmonic structure with weight $s$, we prove that the hyperbolic boundary of $X(s)$ is H\{o}lder equivalent to the self-similar set equipped with the resistance metric. This is a joint work with Ka-Sing Lau and Xiang-Yang Wang.


联系人:阮火军老师ruanhj@zju.edu.cn

Copyright © 2023 浙江大学数学科学学院    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者