组合数学和代数编码讲座—— Covers of the Integers by Residue Classes and their Extensions to Groups
报 告 人:孙智伟教授(南京大学)
报告时间:2024年10月18日周五下午3:00-4:00
报告地点:海纳苑2幢820
摘 要:A system A={a_s+n_sZ: s=1,2,...,k} of k residue classes is called a cover of Z if any integer belongs to one of the k residue classes. This concept was introduced by P. Erdos in the 1950s. Erdos ever conjectured that A is a cover of Z whenever it covers 1,...,2^k. In this talk we introduce some basic results on covers of Z as well as their elegant proofs. We will also talk about covers of groups by finitely many cosets, give a proof of the Neumann-Tomkinson theorem, and introduce progress on the Herzog-Schonheim conjecture and the speaker's disjoint cosets conjecture.
报告人简介:孙智伟,南京大学数学学院教授、博士生导师,中国数学会组合与图论专业委员会副主任。其研究方向为数论与组合数学。他获过多项荣誉与奖励,例如:教育部首届青年教师奖、国家杰出青年科学基金与国务院政府特殊津贴。他在数论与组合、代数的交叉领域有许多创新成果, 已在国内外重要数学期刊上发表了两百多篇学术论文,还著有《数论与组合中的新猜想》、《Fibonacci数与Hilbert第十问题》等书。他还提出了许多原创性数学猜想,引起了国际同行的关注与研究。