数学科学学院

分析和微分方程讨论班——Restrictions of eigenfunctions on arithmetic hyperbolic 3-manifolds

来源:数学科学学院 发布时间:2025-06-30   10

报告人:侯家齐(路易斯安那州立大学)


时间:2025年7月3日,10:30-11:30


地点:海纳苑2幢203室


摘要:Let X be a compact congruence arithmetic hyperbolic 3-manifold and let Y be a totally geodesic surface in X. We let f be a Hecke-Maass form on X, which is a joint eigenfunction of the Laplacian and the Hecke operators. I will talk about the asymptotic behavior of f when its Laplace eigenvalue is large, especially the problems concerning the concentration properties of f along Y. We obtain a power saving over the local bound of Zelditch for the period integral of f over the surface Y. We also prove a power saving over the local bound of Burq, Gérard, and Tzvetkov for the L^2-norm of f restricted to Y. Both of the results are based on the method of arithmetic amplification developed by Iwaniec and Sarnak.


联系人:席亚昆(yakunxi@zju.edu.cn)


Copyright © 2023 浙江大学数学科学学院    版权所有

    浙ICP备05074421号

技术支持: 寸草心科技     管理登录

    您是第 1000 位访问者