数学科学学院

分析和微分方程讨论班——Logvinenko-Sereda sets and Carleson measures on compact manifolds

来源:数学科学学院 发布时间:2025-07-02   10

报告人:王兴(湖南大学)


时间:2025年7月5日,11:00-12:00


地点:海纳苑2幢203室


摘要:Marzo and Ortega-Cerd`a gave geometric characterizations for L^p-Logvinenko-Sereda sets on the standard sphere. Later, Ortega-Cerd`a and Pridhnani further investigated L^2-Logvinenko-Sereda sets and L^2-Carleson measures on compact manifolds without boundary. In this paper, we  characterize L^p-Logvinenko-Sereda sets and L^p-Carleson measures on compact manifolds with or without boundary for all 1<p<\infty.   Furthermore, we investigate Logvinenko-Sereda sets and Carleson measures for eigenfunctions on compact manifolds without boundary, and we completely characterize them on the standard sphere for p > \frac{2m}{m-1}. For the range p < \frac{2m}{m-1}, we conjecture that L^p-Logvinenko-Sereda sets on the standard sphere are characterized by the tubular geometric control condition and we provide some evidence. These results provide new progress on an open problem raised  by Ortega-Cerd`a and Pridhnani.


联系人:席亚昆(yakunxi@zju.edu.cn)



Copyright © 2023 浙江大学数学科学学院    版权所有

    浙ICP备05074421号

技术支持: 寸草心科技     管理登录

    您是第 1000 位访问者