数学科学学院

几何分析讨论班

来源:数学科学学院 发布时间:2025-12-19   10

报告题目:Non-persistence of strongly isolated singularities and Hsiang's minimal hyperspheres

报  告  人:李阳垟(美国圣母大学

时        间:2025年12月24日(星期三), 上午10:30-11:30

地        点:海纳苑2幢102

摘        要:In 1969, Shiing-Shen Chern proposed the spherical Bernstein problem, asking whether the equators in a round (n+1)-dimensional sphere are the only smooth, embedded minimal hyperspheres. In 1983, Hsiang provided a negative answer by constructing an infinite sequence of distinct embedded minimal hyperspheres in the round 4-dimensional sphere. This sequence arises from the desingularization of the Clifford football—the spherical suspension of a Clifford torus inside an equator—which has exactly two strongly isolated singular points. 

About a decade ago, André Neves asked whether such a phenomenon persists under a small perturbation of the round metric. In this talk, I will discuss how to show the non-persistence of these strongly isolated singular points under a generic perturbation by analyzing the Fredholm index of the Jacobi operator for a certain class of varifolds. As a geometric application, we provide a negative answer to Neves’ question. This is based on joint work with Alessandro Carlotto and Zhihan Wang.


Copyright © 2023 浙江大学数学科学学院    版权所有

    浙ICP备05074421号

技术支持: 寸草心科技     管理登录

    您是第 1000 位访问者