数学科学学院

H(div)-conforming HDG methods for the Brinkman equations

来源:数学科学学院 发布时间:2017-12-28   306

报告人:Guosheng Fu (Brown University)

时间:2018年1月3日上午10:50-11:50

地点:逸夫工商楼200-9报告厅

摘要:

We present new parameter-free superconvergent H(div)-conforming  HDG methods for the Brinkman equations on both simplicial and rectangular meshes  using a velocity gradient-velocity-pressure formulation. We obtain an optimal  L2-error estimate for the velocity in both the Stokes-dominated and  Darcy-dominated regimes.  Moreover, thanks to H(div)-conformity of the velocity,  the velocity error estimates are independent of the pressure  regularity.

报告人介绍:

Guosheng Fu, Prager Assistant Professor of Applied Mathematics  at Brown University. Dr. Fu got his Ph.D. from University of Minnesota in 2016.  His research area includes numerical analysis for partial differential  equations, hybridizable discontinuous Galerkin (HDG) and hybrid-mixed finite  element methods, convection-dominated problems and computational fluid  dynamics.

 

欢迎大家参加!

联系人:仲杏慧(zhongxh@zju.edu.cn

Copyright © 2023 浙江大学数学科学学院    版权所有

    浙ICP备05074421号

技术支持: 创高软件     管理登录

    您是第 1000 位访问者