数学科学学院

概率统计学术报告

来源:数学科学学院 发布时间:2018-10-31   798

题目: Nonparametric Sieve Maximum Likelihood Estimation for Semi-competing Risks Data

时间:116日(周二)下午3:005:00

地点:工商楼2楼报告厅(200-9

报告人:Professor Xu, J. F.(The University of Hong Kong)

摘要:In clinical trials comparing therapeutic interventions, a subject may experience distinct types of events. We consider the problem of estimating the transition functions for a semi-competing risks model under illness-death model framework. We propose to estimate the intensity functions by maximizing a B-spline based sieve likelihood. The method yields smooth estimates without parametric assumptions. This approach also permits direct computation of the variance of parameters using the inverse of the Hessian matrix. Under some mild conditions, the estimators are shown to be strongly consistent; the convergence rate of the estimator for transition function is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real data set is used to illustrate our approach.


欢迎大家参加!

联系人:张荣茂(rmzhang@zju.edu.cn)

Copyright © 2023 浙江大学数学科学学院    版权所有

    浙ICP备05074421号

技术支持: 寸草心科技     管理登录

    您是第 1000 位访问者