The high type quadratic Siegel disks are Jordan domains
高等数学研究所学术报告
报告题目: The high type quadratic Siegel disks are Jordan domains
报告人:杨飞博士(南京大学)
时间:2019年4月26日 (星期五)下午1:30-2:30
地点:欧阳楼316教室
摘要:Let $/alpha$ be an irrational number of sufficiently high type and suppose that the quadratic polynomial $P_/alpha(z)=e^{2/pi i/alpha}z+z^2$ has a Siegel disk $/Delta_/alpha$ centered at the origin. We prove that the boundary of $/Delta_/alpha$ is a Jordan curve, and that it contains the critical point $-e^{2/pi i/alpha}/2$ if and only if $/alpha$ satisfies Herman's condition. The main tool in the proof is near-parabolic renormalization. This is a joint work with Mitsuhiro Shishikura.
联系人:尹永成老师(yin@zju.edu.cn )