Analysis & PDE |Blow-up profiles for the parabolic-elliptic Keller-Segel system in whole space with dimension $n /geq 3$
报告人:周茂林 研究员 (南开大学陈省身数学研究所)
时间:2019年11月20日(周三)上午10:00-11:00
地点:工商楼200-9报告厅
摘要:Recently, P. Souplet and M. Winkler [CMP, 2019] studied a simplified parabolic-elliptic Keller-Segel system in $/Omega/subset R^n (n>2)$. They obtained the blow-up profiles $cr^{-2}<U(r)<Cr^{-2}$ under suitable conditions, where $U(x)=/lim_{t/rightarrow T}u(x,t)$. An open problem proposed in this paper is that, the solution admits an exactly profile: $r^2U(r)$ converge to some constant as $r$ goes to zero. In this talk, we mainly discuss how to settle this open problem when the domain is the whole space.
联系人:李奇睿(qi-rui.li@zju.edu.cn)