数学科学学院

Geometry&Analysis | Solvability of a class of singular fourth order equations of Monge-Ampère type

来源:数学科学学院 发布时间:2020-11-24   429

报告人:周斌(北京大学)

时间:2020年12月4日 (周五)下午3:00-5:00

地点:线上报告:腾讯会议 ID:917 693 185密码:0412

链接:https://meeting.tencent.com/s/4Zn0WaQ9uHv2 

摘要:We study the solvability of the second boundary value problem for a class of highly singular fourth order equations of Monge-Ampere type. They arise in the approximation of convex functionals subject to a convexity constraint using Abreu type equations. Both the Legendre transform and partial Legendre transform are used in our analysis. In two dimensions, we establish global solutions to the second boundary value problem for highly singular Abreu equations where the right-hand sides are of $q$-Laplacian type for all $q>1$. We show that minimizers of variational problems with a convexity constraint in two dimensions that arise from the Rochet-Chone model in the monopolist's problem in economics with $q$-power cost can be approximated in the uniform norm by solutions of the Abreu equation for a full range of $q$. 


欢迎各位老师同学参加。

联系人:李奇睿 研究员 (qi-rui.li@zju.edu.cn) 
 
 


Copyright © 2023 浙江大学数学科学学院    版权所有

    浙ICP备05074421号

技术支持: 寸草心科技     管理登录

    您是第 1000 位访问者