Sobolev inequalities and regularity of the linearized complex MongeAmp\`ere and Hessian equations
2023-08-18 10:00:58
2023-08-18 10:00:58
2023-08-18 10:00:58
Speaker : Jiaxiang Wang, Nankai University
Time : 2023-08-18 10:00:58
Location : 101 Haina Complex Building 2
Abstract:
Let $u$ be a smooth, strictly $k$-plurisubharmonic function on a bounded domain $\Omega\in\mathbb C^n$ with $2\leq k\leq n$.
In this talk, we will discuss the regularity of solution to the linearized complex Monge-Amp\`ere and Hessian equations when the complex $k$-Hessian $H_k[u]$ of $u$ is bounded from above and below. We first establish some estimates of Green's functions associated to the linearized equations. Then we prove a class of new Sobolev inequalities.
With these inequalities, we use Moser's iteration to investigate the a priori estimates of Hessian equations and their linearized equations, as well as the K\ahler scalar curvature equation. In particular, we obtain the Harnack inequality for the linearized complex Monge-Amp\`ere and Hessian equations under an extra integrability condition on the coefficients. This is a joint work with Bin Zhou.