计算与应用讨论班——A stabilized nonconforming finite element method for the surface biharmonic problem
2025-05-07 14:00:30
2025-05-07 14:00:30
2025-05-07 14:00:30
Speaker : Shuonan Wu,Peking University
Time : 2025-05-07 14:00:30
Location : 203 Haina Complex Building 2
报告人:吴朔男(北京大学)
时间:2025年5月7日,14:00-16:00
地点:海纳苑2幢203室
摘要:This talk presents a novel stabilized nonconforming finite element method for solving the surface biharmonic problem. The method extends the New-Zienkiewicz-type (NZT) element to polyhedral (approximated) surfaces by employing the Piola transform to define the connection of vertex gradients between adjacent elements. Key features of the surface NZT finite element space include its H1-relative conformity and the weak H(div) conformity of the surface gradient, allowing for stabilization without the need for artificial parameters. Assuming that the exact solution and the dual problem possess only H3 regularity, we establish optimal error estimates in the energy norm and provide, for the first time, a detailed analysis yielding optimal second-order convergence in the broken H1 norm. Numerical experiments are provided to support the theoretical results, and they suggest that the stabilization term may not be necessary.
报告人简介:吴朔男分别于2009年和2014年在北京大学数学科学学院获得学士和博士学位,2014年至2018年在美国宾州州立大学进行博士后研究,2018年加入北京大学数学科学学院信息与计算科学系,现任长聘副教授/研究员。主要研究方向为偏微分方程数值解,研究内容包括:磁流体力学中的磁对流的稳定离散、非线性、高阶椭圆型方程的非协调有限元的构造和分析,空间分数阶问题的离散和快速求解器等。研究工作发表在Math. Comp., Numer. Math., SIAM J. Numer. Anal.等核心期刊上。曾获第六届中国工业与应用数学学会应用数学青年科技奖(2022)。
联系人:李雨文(liyuwen@zju.edu.cn)